首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The investigation discussed in this paper was motivated by the need for model which is able to simulate both permeability reduction of hydrocarbon formations due to the mud-component invasion during over-balance drilling, casing/cementing, workover operations, and dynamics of permeability repairing during well cleanup. The paper focuses on development and validation of model to describe internal mud cake (IMC) dynamics, placing special emphasis on dynamics of the IMC removing during well cleanup procedure. Set of laboratory experiments with clay slurry injection and subsequent brine water backflow in samples of Bentheimer sandstone is discussed. The specific of these experiments is that backflow was carried out with alternating rates (“multirate” backflow). It is shown that the conventional deep-bed filtration model is not able to reproduce the dynamics of multirate backflow. The stochastic model we suggest takes into account pore size distribution and describes the mobilization of trapped particles within individual groups of pores within a “pore ensemble.” We provide simulation results to show that the suggested model reasonably reproduces permeability dynamics during both clay slurry injection and brine water backflow stages.  相似文献   

2.
Low salinity water injections for oil recovery have shown seemingly promising results in the case of clay-bearing sandstones saturated with asphaltic crude oil. Reported data showed that low salinity water injection could provide up to 20% pore volume (PV) of additional oil recovery for core samples and up to 25% PV for reservoirs in near wellbore regions, compared with brine injection at the same Darcy velocity. The question remains as to whether this additional recovery is also attainable in reservoirs. The answer requires a thorough understanding of oil recovery mechanism of low salinity water injections. Numerous hypotheses have been proposed to explain the increased oil recovery using low salinity water, including migration of detached mixed-wet clay particles with absorbed residual oil drops, wettability alteration toward increased water-wetness, and emulsion formation. However, many later reports showed that a higher oil recovery associated with low salinity water injection at the common laboratory flow velocity was neither necessarily accompanied by migration of clay particles, nor necessarily accompanied by emulsion. Moreover, increased water-wetness has been shown to cause the reduction of oil recovery. The present study is based on both experimental and theoretical analyses. Our study reveals that the increased oil recovery is only related to the reduction of water permeability due to physical plugging of the porous network by swelling clay aggregates or migrating clay particles and crystals. At a fixed apparent flow velocity, the value of negative pressure gradient along the flow path increases as the water permeability decreases. Some oil drops and blobs can be mobilized under the increased negative pressure gradient and contribute to the additional oil recovery. Based on the revealed mechanism, we conclude that low salinity water injection cannot be superior to brine injection in any clay-bearing sandstone reservoir at the maximum permitted injection pressure. Through our study of low salinity water injection, the theory of tertiary oil recovery has been notably improved.  相似文献   

3.
We discuss the governing system for oil–water flow with varying water composition. The model accounts for wettability alteration, which affects the relative permeability, and for salinity-variation-induced fines migration, which reduces the relative permeability of water. The overall ionic strength represents the aqueous phase composition in the model. One-dimensional displacement of oil by high-salinity water followed by low-salinity-slug injection and high-salinity water chase drive allows for exact analytical solution. The solution is derived using the splitting method. The analytical model obtained analyses the effects of wettability alteration and fines migration on oil recovery as two distinct physical mechanisms. For typical reservoir conditions, the significant effects of both mechanisms are observed.  相似文献   

4.
The wettability of a crude oil/brine/rock system is of central importance in determining the oil recovery efficiency of water displacement processes in oil reservoirs. Wettability of a rock sample has traditionally been measured using one of two experimental techniques, viz. the United States Bureau of Mines and Amott tests. The former gives the USBM index, I USBM, and the latter yields the Amott–Harvey index, I AH. As there is no well-established theoretical basis for either test, any relationship between the two indices remains unclear.Analytical relationships between I AH and I USBM for mixed-wet and fractionally-wet media have been based on a number of simplifying assumptions relating to the underlying pore-scale displacement mechanisms. This simple approach provides some guidelines regarding the influence of the distribution of oil-wet surfaces within the porous medium on I AH and I USBM. More detailed insight into the relationship between I AH and I USBM is provided by modelling the pore-scale displacement processes in a network of interconnected pores. The effects of pore size distribution, interconnectivity, displacement mechanisms, distribution of volume and of oil-wet pores within the pore space have all been investigated by means of the network model.The results of these analytical calculations and network simulations show that I AH and I USBM need not be identical. Moreover, the calculated indices and the relationship between them suggest explanations for some of the trends that appear in experimental data when both I USBM and I AH have been reported in the literature for tests with comparable fluids and solids. Such calculations should help with the design of more informative wettability tests in the future.  相似文献   

5.
Enhanced oil recovery (EOR) by alkaline flooding for conventional oils has been extensively studied. For heavy oils, investigations are very limited due to the unfavorable mobility ratio between the water and oil phases. In this study, the displacement mechanisms of alkaline flooding for heavy oil EOR are investigated by conducting flood tests in a micromodel. Two different displacement mechanisms are observed for enhancing heavy oil recovery. One is in situ water-in-oil (W/O) emulsion formation and partial wettability alteration. The W/O emulsion formed during the injection of alkaline solution plugs high permeability water channels, and pore walls are altered to become partially oil-wetted, leading to an improvement in sweep efficiency and high tertiary oil recovery. The other mechanism is the formation of an oil-in-water (O/W) emulsion. Heavy oil is dispersed into the water phase by injecting an alkaline solution containing a very dilute surfactant. The oil is then entrained in the water phase and flows out of the model with the water phase.  相似文献   

6.
Oil can be recovered from fractured, initially oil-wet carbonate reservoirs by wettability alteration with dilute surfactant and electrolyte solutions. The aim of this work is to study the effect of salinity, surfactant concentration, electrolyte concentration, and temperature on the wettability alteration and identify underlying mechanisms. Contact angles, phase behavior, and interfacial tensions were measured with two oils (a model oil and a field oil) at temperatures up to 90°C. There exists an optimal surfactant concentration for varying salinity and an optimal salinity for varying surfactant concentration at which the wettability alteration on an oil-aged calcite plate is the maximum for anionic surfactants studied. As the salinity increases, the extent of maximum wettability alteration decreases; also the surfactant concentration needed for the maximum wettability alteration decreases. IFT and contact angle were found to have the same optimal salinity for a given concentration of anionic surfactants studied. As the ethoxylation increases in anionic surfactants, the extent of wettability alteration on calcite plates increases. Wettability of oil-aged calcite plates can be altered by divalent ions at a high temperature (90°C and above). Sulfate ions alter wettability to a greater extent in the presence of magnesium and calcium ions than in the absence. A high concentration of calcium ions can alter wettability alone. Magnesium ions alone do not change calcite plate wettability. Wettability alteration increases the oil recovery rate from initially oil-wet Texas Cordova Cream limestone cores by imbibition.  相似文献   

7.
A dynamic pore network model, capable of predicting the displacement of oil from a porous medium by a wettability-altering and interfacial tension reducing surfactant solution, is presented. The key ingredients of the model are (1) a dynamic network model for the displacement of oil by aqueous phase taking account of capillary and viscous effects, (2) a simulation of the transport of surfactant through the network by advection and diffusion taking account of adsorption on the solid surface, and (3) the coupling of these two by linking the contact angle and interfacial tension appearing in the dynamic network simulation to the local concentration of surfactant computed in the transport simulation. The coupling is two-way: The flow field used to advect the surfactant concentration is that associated with the displacement of oil by the injected aqueous phase, and the surfactant concentration influences the flow field through its effect on the capillarity parameters. We present results obtained using the model to validate that it reproduces the displacement patterns observed by other authors in two-dimensional networks as capillary number and mobility ratio are varied, and to illustrate the effects of surfactant on displacement patterns. A mechanism is demonstrated whereby in an initially mixed-wet medium, surfactant-induced wettability alteration can lead to stabilization of displacement fronts.  相似文献   

8.
A novel concept for modeling pore-scale phenomena included in several enhanced oil recovery (EOR) methods is presented. The approach combines a quasi-static invasion percolation model with a single-phase dynamic transport model in order to integrate mechanistic chemical oil mobilization methods. A framework is proposed that incorporates mobilization of capillary trapped oil. We show how double displacement of reservoir fluids can contribute to mobilize oil that are capillary trapped after waterflooding. In particular, we elaborate how the physics of colloidal dispersion gels (CDG) or linked polymer solutions (LPS) is implemented. The linked polymer solutions consist of low concentration partially hydrolyzed polyacrylamide polymer crosslinked with aluminum citrate. Laboratory core floods have shown demonstrated increased oil recovery by injection of linked polymer solution systems. LPS consist of roughly spherical particles with sizes in the nanometer range (50–150 nm). The LPS process involve mechanisms such as change in rheological properties effect, adsorption and entrapment processes that can lead to a microscopic diversion and mobilization of waterflood trapped oil. The purpose is to model the physical processes occurring on pore scale during injection of linked polymer solutions. A sensitivity study has also been performed on trapped oil saturation with respect to wettability status to analyze the efficiency of LPS on different wettability conditions. The network modeling results suggest that weakly wet reservoirs are more suitable candidates for performing linked polymer solution injection.  相似文献   

9.
It is well known that the oil recovery is affected by wettability of porous medium; however, the role of nanoparticles on wettability alteration of medium surfaces has remained a topic of debate in the literature. Furthermore, there is a little information of the way dispersed silica nanoparticles affect the oil recovery efficiency during polymer flooding, especially, when heavy oil is used. In this study, a series of injection experiments were performed in a five-spot glass micromodel after saturation with the heavy oil. Polyacrylamide solution and dispersed silica nanoparticles in polyacrylamide (DSNP) solution were used as injected fluids. The oil recovery as well as fluid distribution in the pores and throats was measured with analysis of continuously provided pictures during the experiments. Sessile drop method was used for measuring the contact angles of the glass surface at different states of wettability after coating by heavy oil, distilled water, dispersed silica nanoparticles in water (DSNW), polyacrylamide solution, and DSNP solution. The results showed that the silica nanoparticles caused enhanced oil recovery during polymer flooding by a factor of 10%. The distribution of DSNP solution during flooding tests in pores and throats showed strong water-wetting of the medium after flooding with this solution. The results of sessile drop experiments showed that coating with heavy oil, could make an oil-wet surface. Coating with distilled water and polymer solution could partially alter the wettability of surface to water-wet and coating with DSNW and DSNP could make a strongly water-wet surface.  相似文献   

10.
Carbonated water injection (CWI) is a CO2-augmented water injection strategy that leads to increased oil recovery with added advantage of safe storage of CO2 in oil reservoirs. In CWI, CO2 is used efficiently (compared to conventional CO2 injection) and hence it is particularly attractive for reservoirs with limited access to large quantities of CO2, e.g. offshore reservoirs or reservoirs far from large sources of CO2. We present the results of a series of CWI coreflood experiments using water-wet and mixed-wet Clashach sandstone cores and a reservoir core with light oil (n-decane), refined viscous oil and a stock-tank crude oil. The experiments were carried out to assess the performance of CWI and to quantify the level of additional oil recovery and CO2 storage under various experimental conditions. We show that the ultimate oil recovery by CWI is higher than the conventional water flooding in both secondary and tertiary recovery methods. Oil swelling as a result of CO2 diffusion into the oil and the subsequent oil viscosity reduction and coalescence of the isolated oil ganglia are amongst the main mechanisms of oil recovery by CWI that were observed through the visualisation experiments in high-pressure glass micromodels. There was also evidence of a change in the rock wettability that could also influence the oil recovery. The coreflood test results also reveal that the CWI performance is influenced by oil viscosity, core wettability and the brine salinity. Higher oil recovery was obtained with the mixed-wet core than the water-wet core, with light oil than with the viscous oil and low salinity carbonated brine than high-salinity carbonated brine. At the end of the flooding period, an encouraging amount of the injected CO2 was stored in the brine and the remaining oil in the form of stable dissolved CO2. The experimental results clearly demonstrate the potential of CWI for improving oil recovery as compared with the conventional water flooding (secondary recovery) or as a water-based EOR (enhanced oil recovery) method for watered out reservoirs.  相似文献   

11.
Pore-network modelling is commonly used to predict capillary pressure and relative permeability functions for multi-phase flow simulations. These functions strongly depend on the presence of fluid films and layers in pore corners. Recently, van Dijke and Sorbie (J. Coll. Int. Sci. 293:455–463, 2006) obtained the new thermodynamically derived criterion for oil layers existence in the pore corners with non-uniform wettability caused by ageing. This criterion is consistent with the thermodynamically derived capillary entry pressures for other water invasion displacements and it is more restrictive than the previously used geometrical layer collapse criterion. The thermodynamic criterion has been included in a newly developed two-phase flow pore network model, as well as two versions of the geometrical criterion. The network model takes as input networks extracted from pore space reconstruction methods or CT images. Furthermore, a new n-cornered star shape characterization technique has been implemented, based on shape factor and dimensionless hydraulic radius as input parameters. For two unstructured networks, derived from a Berea sandstone sample, oil residuals have been estimated for different wettability scenarios, by varying the contact angles in oil-filled pores after ageing from weakly to strongly oil-wet. Simulation of primary drainage, ageing and water invasion show that the thermodynamical oil layer existence criterion gives more realistic oil residual saturations compared to the geometrical criteria. Additionally, a sensitivity analysis has been carried out of oil residuals with respect to end-point capillary pressures. For strongly oil-wet cases residuals increase strongly with increasing end-point capillary pressures, contrary to intermediate oil-wet cases.  相似文献   

12.
In three-phase flow, the macroscopic constitutive relations of capillary pressure and relative permeability as functions of saturation depend in a complex manner on the underlying pore occupancies. These three-phase pore occupancies depend in turn on the interfacial tensions, the pore sizes and the degree of wettability of the pores, as characterised by the cosines of the oil–water contact angles. In this work, a quasi-probabilistic approach is developed to determine three-phase pore occupancies in media where the degree of wettability varies from pore to pore. Given a set of fluid and rock properties, a simple but novel graphical representation is given of the sizes and oil–water contact angles underlying three-phase occupancies for every allowed combination of capillary pressures. The actual phase occupancies are then computed using the contact angle probability density function. Since a completely accessible porous medium is studied, saturations, capillary pressures, and relative permeabilities are uniquely related to the pore occupancies. In empirical models of three-phase relative permeability it is of central importance whether a phase relative permeability depends only on its own saturation and how this relates to the corresponding two-phase relative permeability (if at all). The new graphical representation of pore sizes and wettabilities clearly distinguishes all three-phase pore occupancies with respect to these saturation-dependencies. Different types of saturation-dependencies may occur, which are shown to appear in ternary saturation diagrams of iso-relative permeability curves as well, thus guiding empirical approaches. However, for many saturation combinations three-phase and two-phase relative permeabilities can not be linked. In view of the latter, the present model has been used to demonstrate an approach for three-phase flow modelling on the basis of the underlying pore-scale processes, in which three-phase relative permeabilities are computed only along the actual flow paths. This process-based approach is used to predict an efficient strategy for oil recovery by simultaneous water-alternating-gas (SWAG) injection.  相似文献   

13.
Although, the effects of ultrasonic irradiation on multiphase flow through porous media have been studied in the past few decades, the physics of the acoustic interaction between fluid and rock is not yet well understood. Various mechanisms may be responsible for enhancing the flow of oil through porous media in the presence of an acoustic field. Capillary related mechanisms are peristaltic transport due to mechanical deformation of the pore walls, reduction of capillary forces due to the destruction of surface films generated across pore boundaries, coalescence of oil drops due to Bjerknes forces, oscillation and excitation of capillary trapped oil drops, forces generated by cavitating bubbles, and sonocapillary effects. Insight into the physical principles governing the mobilization of oil by ultrasonic waves is vital for developing and implementing novel techniques of oil extraction. This paper aims at identifying and analyzing the influence of high-frequency, high-intensity ultrasonic radiation on capillary imbibition. Laboratory experiments were performed using cylindrical Berea sandstone and Indiana limestone samples with all sides (quasi-co-current imbibition), and only one side (counter-current imbibition) contacting with the aqueous phase. The oil saturated cores were placed in an ultrasonic bath, and brought into contact with the aqueous phase. The recovery rate due to capillary imbibition was monitored against time. Air–water, mineral oil–brine, mineral oil–surfactant solution and mineral oil-polymer solution experiments were run each exploring a separate physical process governing acoustic stimulation. Water–air imbibition tests isolate the effect of ultrasound on wettability, capillarity and density, while oil–brine imbibition experiments help outline the ultrasonic effect on viscosity and interfacial interaction between oil, rock and aqueous phase. We find that ultrasonic irradiation enhances capillary imbibition recovery of oil for various fluid pairs, and that such process is dependent on the interfacial tension and density of the fluids. Although more evidence is needed, some runs hint that wettability was not altered substantially under ultrasound. Preliminary analysis of the imbibition recoveries also suggests that ultrasound enhances surfactant solubility and reduce surfactant adsorption onto the rock matrix. Additionally, counter-current experiments involving kerosene and brine in epoxy coated Berea sandstone showed a dramatic decline in recovery. Therefore, the effectiveness of any ultrasonic application may strongly depend on the nature of interaction type, i.e., co- or counter-current flow. A modified form of an exponential model was employed to fit the recovery curves in an attempt to quantify the factors causing the incremental recovery by ultrasonic waves for different fluid pairs and rock types.  相似文献   

14.
Wettability alteration to intermediate gas-wetting in porous media by treatment with FC-759, a fluorochemical polymer has been studied experimentally. Berea sandstone was used as the main rock sample in our work, and its wettability before and after chemical treatment was studied at various temperatures from 25 to 93°C. We also studied recovery performance for both gas/oil and oil/water systems for Berea sandstone before and after wettability alteration by chemical treatment. Our experiment shows that chemical treatment with FC-759 can result in: (1) wettability alteration from strong liquid-wetting to stable intermediate gas-wetting at room temperature and at elevated temperatures; (2) neutral wetting for gas, oil, and water phases in two-phase flow; (3) significant increase in oil mobility for gas/oil system; and (4) improved recovery behavior for both gas/oil and oil/water systems. This work reveals a potential for field application for improved gas-well deliverability and well injectivity by altering the rock wettability around wellbore in gas condensate reservoirs from strong liquid-wetting to intermediate gas-wetting.  相似文献   

15.
Man  H. N.  Jing  X. D. 《Transport in Porous Media》2000,41(3):263-285
In order to model petrophysical properties of hydrocarbon reservoir rocks, the underlying physics occurring in realistic rock pore structures must be captured. Experimental evidence showing variations of wetting occurring within a pore, and existence of the so-called 'non-Archie' behaviour, has led to numerical models using pore shapes with crevices (for example, square, elliptic, star-like shapes, etc.). This paper presents theoretical derivations and simulation results of a new pore space network model for the prediction of petrophysical properties of reservoir rocks. The effects of key pore geometrical factors such as pore shape, pore size distribution and pore co-ordination number (pore connectivity) have been incorporated into the theoretical model. In particular, the model is used to investigate the effects of wettability and saturation history on electrical resistivity and capillary pressure characteristics. The petrophysical characteristics were simulated for reservoir rock samples. The use of the more realistic grain boundary pore (GBP) shape allows simulation of the generic behaviour of sandstone rocks, with various wetting scenarios. The predictions are in close agreement with electrical resistivity and capillary pressure characteristics observed in experiments.  相似文献   

16.

Three-phase flow in porous media is encountered in many applications including subsurface carbon dioxide storage, enhanced oil recovery, groundwater remediation and the design of microfluidic devices. However, the pore-scale physics that controls three-phase flow under capillary dominated conditions is still not fully understood. Recent advances in three-dimensional pore-scale imaging have provided new insights into three-phase flow. Based on these findings, this paper describes the key pore-scale processes that control flow and trapping in a three-phase system, namely wettability order, spreading and wetting layers, and double/multiple displacement events. We show that in a porous medium containing water, oil and gas, the behaviour is controlled by wettability, which can either be water-wet, weakly oil-wet or strongly oil-wet, and by gas–oil miscibility. We provide evidence that, for the same wettability state, the three-phase pore-scale events are different under near-miscible conditions—where the gas–oil interfacial tension is ≤?1 mN/m—compared to immiscible conditions. In a water-wet system, at immiscible conditions, water is the most-wetting phase residing in the corners of the pore space, gas is the most non-wetting phase occupying the centres, while oil is the intermediate-wet phase spreading in layers sandwiched between water and gas. This fluid configuration allows for double capillary trapping, which can result in more gas trapping than for two-phase flow. At near-miscible conditions, oil and gas appear to become neutrally wetting to each other, preventing oil from spreading in layers; instead, gas and oil compete to occupy the centre of the larger pores, while water remains connected in wetting layers in the corners. This allows for the rapid production of oil since it is no longer confined to movement in thin layers. In a weakly oil-wet system, at immiscible conditions, the wettability order is oil–water–gas, from most to least wetting, promoting capillary trapping of gas in the pore centres by oil and water during water-alternating-gas injection. This wettability order is altered under near-miscible conditions as gas becomes the intermediate-wet phase, spreading in layers between water in the centres and oil in the corners. This fluid configuration allows for a high oil recovery factor while restricting gas flow in the reservoir. Moreover, we show evidence of the predicted, but hitherto not reported, wettability order in strongly oil-wet systems at immiscible conditions, oil–gas–water, from most to least wetting. At these conditions, gas progresses through the pore space in disconnected clusters by double and multiple displacements; therefore, the injection of large amounts of water to disconnect the gas phase is unnecessary. We place the analysis in a practical context by discussing implications for carbon dioxide storage combined with enhanced oil recovery before suggesting topics for future work.

  相似文献   

17.
Yutkin  M. P.  Radke  C. J.  Patzek  T. W. 《Transport in Porous Media》2021,136(2):411-429

Higher oil recovery after waterflood in carbonate reservoirs is attributed to increasing water wettability of the rock that in turn relies on complicated surface chemistry. In addition, calcite mineral reacts with aqueous solutions and can alter substantially the composition of injected water by mineral dissolution. Carefully designed chemical and/or brine flood compositions in the laboratory may not remain intact while the injected solutions pass through the reactive reservoir rock. This is especially true for a low-salinity waterflood process, where some finely tuned brine compositions can improve flood performances, whereas others cannot. We present a 1D reactive transport numerical model that captures the changes in injected compositions during water flow through porous carbonate rock. We include highly coupled bulk aqueous and surface carbonate-reaction chemistry, detailed reaction and mass transfer kinetics, 2:1 calcium ion exchange, and axial dispersion. At typical calcite reaction rates, local equilibrium is established immediately upon injection. In SI, we validate the reactive transport model against analytic solutions for rock dissolution, ion exchange, and longitudinal dispersion, each considered separately. Accordingly, using an open-source algorithm (Charlton and Parkhurst in Comput Geosci 37(10):1653–1663, 2011. https://doi.org/10.1016/j.cageo.2011.02.005), we outline a design tool to specify chemical/brine flooding formulations that correct for composition alteration by the carbonate rock. Subsequent works compare proposed theory against experiments on core plugs of Indiana limestone and give examples of how injected salinity compositions deviate from those designed in the laboratory for water-wettability improvement.

  相似文献   

18.
Core-scale experiments and analyses would often lead to estimation of saturation functions (relative permeability and capillary pressure). However, despite previous attempts on developing analytical and numerical methods, the estimated flow functions may not be representative of coreflood experiments when it comes to predicting similar experiments due to non-uniqueness issues of inverse problems. In this work, a novel approach was developed for estimation of relative permeability and capillary pressure simultaneously using the results of “multiple” corefloods together, which is called “co-history matching.” To examine this methodology, a synthetic (numerical) model was considered using core properties obtained from pore network model. The outcome was satisfactorily similar to original saturation functions. Also, two real coreflood experiments were performed where water at high and low rates were injected under reservoir conditions (live fluid systems) using a carbonate reservoir core. The results indicated that the profiles of oil recovery and differential pressure (dP) would be significantly affected by injection rate scenarios in non-water wet systems. The outcome of co-history matching could indicate that, one set of relative permeability and capillary pressure curves can reproduce the experimental data for all corefloods.  相似文献   

19.
A fundamental study of microscopic mechanisms and pore-level phenomena in the Microbial Improved Oil Recovery method has been investigated. Understanding active mechanisms to increase oil recovery is the key to predict and plan MIOR projects successfully. This article presents the results of visualization experiments carried out in a transparent pore network model. In order to study the pore scale behavior of bacteria, dodecane and an alkane oxidizing bacterium, Rhodococcus sp. 094, suspended in brine, are examined for evaluating the performance of bacterial flooding in the glass micromodel. The observations show the effects of bacteria on remaining oil saturation, allowing us to get better insight on the mechanisms. Bacterial mass composed of bacteria and bioproducts growth in the fluid interfaces and pore walls have been recorded and are presented. No gas is observed throughout any of the experiments. The biomass blocks some pores and pore-throats, and thereby changing the flow pattern. As a consequent, the flow pattern change together with the previously proposed mechanisms, including the interfacial tension reduction and wettability changes are recognized as active mechanisms in the MIOR process.  相似文献   

20.
The physical processes occurring during fluid flow and displacement within porous media having wettability heterogeneities have been investigated in specially designed heterogeneous visual models. The models were packed with glass beads, areas of which were treated with a water repellent to create wettability variations. Immiscible displacement experiments show visually the effect of wettability heterogeneities on the formation of residual oil and recovery due to capillary trapping. This work demonstrates by experiment the importance of incorporating reservoir heterogeneity into pore displacement analysis, essential for the correct interpretation of core data and for directing the route for scale-up of the processes to reservoir scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号