首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Naturally fractured reservoirs contain about 25–30% of the world supply of oil. In these reservoirs, fractures are the dominant flow path. Therefore, a good understanding of transfer parameters such as relative permeability as well as flow regimes occurring in a fracture plays an important role in developing and improving oil production from such complex systems. However, in contrast with gas–liquid flow in a single fracture, the flow of heavy oil and water has received less attention. In this research, a Hele-Shaw apparatus was built to study the flow of water in presence of heavy oil and display different flow patterns under different flow rates and analyze the effect of fracture orientations on relative permeability curves as well as flow regimes. The phase flow rates versus phase saturation results were converted to experimental relative permeability curves. The results of the experiments demonstrate that, depending on fracture and flow orientation, there could be a significant interference between the phases flowing through the fracture. The results also reveal that both phases can flow in both continuous and discontinuous forms. The relative permeability curves show that the oil–water relative permeability not only depends on fluid saturations and flow patterns but also fracture orientation.  相似文献   

2.
Relative Permeability Analysis of Tube Bundle Models   总被引:1,自引:1,他引:0  
The analytical solution for calculating two-phase immiscible flow through a bundle of parallel capillary tubes of uniform diametral probability distribution is developed and employed to calculate the relative permeabilities of both phases. Also, expressions for calculating two-phase flow through bundles of serial tubes (tubes in which the diameter varies along the direction of flow) are obtained and utilized to study relative permeability characteristics using a lognormal tube diameter distribution. The effect of viscosity ratio on conventional relative permeability was investigated and it was found to have a significant effect for both the parallel and serial tube models. General agreement was observed between trends of relative permeability ratios found in this work and those from experimental results of Singhal et al. (1976) using porous media consisting of mixtures of Teflon powder and glass beads. It was concluded that neglecting the difference between the average pressure of the non-wetting phase and the average pressure of the wetting phase (the macro-scale capillary pressure) – a necessary assumption underlying the popular analysis methods of Johnson et al. (1959) and Jones and Roszelle (1978) – was responsible for the disparity in the relative permeability curves for various viscosity ratios. The methods therefore do not account for non-local viscous effects when applied to tube bundle models. It was contended that average pressure differences between two immiscible phases can arise from either capillary interfaces (micro-scale capillary pressures) or due to disparate pressure gradients that are maintained for a flow of two fluids of viscosity ratio that is different from unity.  相似文献   

3.
Fractures serve as primary conduits having a great impact on the migration of injected fluid into fractured permeable media. Appropriate transport properties such as relative permeability and capillary pressure are essential for successful simulation and prediction of multi-phase flow in such systems. However, the lack of a thorough understanding of the dynamics governing immiscible displacement in fractured media, limits our ability to properly represent their macroscopic transport properties. Previous experimental observations of imbibition front evolution in fractured rocks are examined in the present study using an automated history-matching approach to obtain representative relative permeability and capillary pressure curves. Predicted imbibition front evolution under different flow conditions resulted in an excellent agreement with experimental observations. Sensitivity analyses, in combination with direct experimental observation, allowed exploring the competing effects of relative permeability and capillary pressure on the development of saturation distribution and imbibing front evolution in fractured porous media. Results show that residual saturations are most sensitive to matrix relative permeability to oil, while the ratio of oil and water relative permeability, rock heterogeneity, boundary condition, and matrix–fracture capillary pressure contrast, affect displacement shape, speed, and geometry of the imbibing front.  相似文献   

4.
A computationally economic finite-element-based multi-linear elastic orthotropic materials approach has been developed to predict the stress–strain and fracture behaviour of ceramic matrix composites with strain-induced damage. The finite element analysis utilises a solid element to represent a homogenised orthotropic medium of a heterogeneous uni-directional tow. The non-linear multi-axial stress–strain behaviour has been discretised to multi-linear elastic curves, which have been implemented by a user defined subroutine or UMAT in the commercial finite element package, ABAQUS. The model has been used to study the performance of two CMC composites: a SiC (Nicalon) fibre/calcium aluminosilicate (CAS) matrix 0°/90° cross-ply laminate Nicalon/CAS; and, a carbon fibre/carbon matrix–SiC matrix (C/C–SiC) plain weave laminate DLR-XT. The global stress–strain curves with catastrophic fracture behaviour and effects of fibre waviness have been predicted. Comparisons have been made between the predictions and experimental data for both materials. The predicted results when fibre waviness is taken into account compare well with the experimental data.  相似文献   

5.
The present study investigates the microstructural size effect on the strength of a bar under axial loading, and on the toughness and crack growth of a beam under three-point bending within the framework of strain gradient elasticity. The gradient responses have been found considerably tougher as compared to the classical theory predictions and the observed deviation increases with increasing values of the non-dimensional parameter g/L (microstructural length over structural length). Based on the analytical solution of the strain energy release rate for the three-point bending case, a new, simple and universal, strain gradient elasticity, brittle fracture criterion and a new, size adjusted fatigue crack growth law have been established. Finally, the analytical predictions of the current modeling compare well with previous experimental data, based on three-point bending tests on single-edge notched concrete beams.  相似文献   

6.
胡冉  钟翰贤  陈益峰 《力学学报》2023,55(2):543-553
岩体裂隙的有效渗透率是描述岩体非饱和或多相渗流的关键参数,而裂隙开度是影响有效渗透率的重要因素.通过自主研发的粗糙裂隙多相渗流可视化实验平台,针对天然岩体裂隙复制而成的裂隙模型开展变开度条件下的多相渗流可视化实验,研究开度变化对多相渗流流动结构以及有效渗透率的影响.研究表明:非湿润相流体运动通道,在低流量比条件下呈现出气泡流流动结构,而在高流量比条件下呈现较为稳定的通道流流动结构.随着开度的增加,非湿润相流动通道的分支变少、等效宽度增加,两相流体的有效渗透率均增大,流动结构趋于稳定.可视化结果还阐明了柱塞流流动结构下,两相流体交替占据裂隙空间的竞争机制:当非湿润相流体通道由连续转变为不连续时,裂隙进出口压差显著增加;反之,当该通道由不连续转变为连续时,压差显著减小.最后,基于分形理论以及渗透率统计建模方法,建立了考虑开度效应的岩体裂隙多相渗流有效渗透率理论模型,并通过实验测定的有效渗透率数据验证了该模型的正确性与有效性.  相似文献   

7.
Adding surfactant into the displacing aqueous phase during surfactant-enhanced aquifer remediation of NAPL contamination and in chemical flooding oil recovery significantly changes interfacial tension (IFT) (σ) on water–oil interfaces within porous media. The change in IFT may have a large impact on relative permeability for the two-phase flow system. In most subsurface flow investigations, however, the influence of IFT on relative permeability has been ignored. In this article, we present an experimental study of two-phase relative- permeability behavior in the low and more realistic ranges of IFT for water–oil systems. The experimental work overcomes the limitations of the existing laboratory measurements of relative permeability (which are applicable only for high ranges of IFT (e.g., σ > 10−2 mN/m). In particular, we have (1) developed an improved steady-state method of measuring complete water–oil relative permeability curves; (2) proven that a certain critical range of IFT exists such that IFT has little impact on relative permeability for σ greater than this range, while within the range, relative permeabilities to both water and oil phases will increase with decreasing IFT; and (3) shown that a functional correlation exists between water–oil two-phase relative permeability and IFT. In addition, this work presents such correlation formula between water–oil two-phase relative permeability and IFT. The experimental results and proposed conceptual models will be useful for quantitative studies of surfactant-enhanced aquifer remediation and chemical flooding operations in reservoirs.  相似文献   

8.
The flow boiling phenomenon over a heated tube restricted by an interference sleeve, which is a passive enhancement technique, has been analysed using a semi-empirical approach. The liquid boiled was water flowing through an annular cross-section. A model developed earlier for the case of pool boiling over porous surfaces has been adapted after modification to pool boiling with interference surfaces using equivalent geometrical parameters and a modified permeability factor. This was further extended to saturated flow boiling situation using an additive mechanism. The single phase heat transfer coefficient required for the additive mechanism is obtained from an experimental correlation developed in the present study. The suppression factors evaluated for the eight sleeve geometries used in the present investigation are expressed in terms of the single phase Reynolds number and the Martinelli parameter. Very good agreement was observed between the model predictions and experimental data validating the mechanisms postulated. Further, a purely empirical correlation based on the present experimental data has been proposed to estimate the two-phase heat transfer coefficient. While the empirical correlation shows a better fit with the experimental data, the additive model has a physical basis.  相似文献   

9.
Suitable pin-to-hole interference can significantly increase the fatigue life of a pin joint. In practical design, the initial stresses due to interference are high and they are proportional to the effective interference. In experimental studies on such joints, difficulties have been experienced in estimating the interference accurately from physical measurements of pin and hole diameters. A simple photoelastic method has been developed to determine the effective interference to a high degree of accuracy. This paper presents the method and reports illustrative data from a successful application thereof.  相似文献   

10.
11.
The classic Kozeny–Carman equation (KC) uses parameters that are empirically based or not readily measureable for predicting the permeability of unfractured porous media. Numerous published KC modifications share this disadvantage, which potentially limits the range of conditions under which the equations are applicable. It is not straightforward to formulate non-empirical general approaches due to the challenges of representing complex pore and fracture networks. Fractal-based expressions are increasingly popular in this regard, but have not yet been applied accurately and without empirical constants to estimating rock permeability. This study introduces a general non-empirical analytical KC-type expression for predicting matrix and fracture permeability during single-phase flow. It uses fractal methods to characterize geometric factors such as pore connectivity, non-uniform grain or crystal size distribution, pore arrangement, and fracture distribution in relation to pore distribution. Advances include (i) modification of the fractal approach used by Yu and coworkers for industrial applications to formulate KC-type expressions that are consistent with pore size observations on rocks. (ii) Consideration of cross-flow between pores that adhere to a fractal size distribution. (iii) Extension of the classic KC equation to fractured media absent empirical constants, a particular contribution of the study. Predictions based on the novel expression correspond well to measured matrix and fracture permeability data from natural sandstone and carbonate rocks, although the currently available dataset for fractures is sparse. The correspondence between model calculation results and matrix data is better than for existing models.  相似文献   

12.
The fracture behavior of center-notched unidirectional borsic/titanium composites under uniaxial tensile loading has been investigated. Load-crack-opening displacement (COD) curves were obtained for crack length-to-width ratios ranging from 0.05 to 0.5. The COD was measured across the crack surfaces by means of laser interferometric displacement gage (gage length of 500 μm). As expected, the interferometric displacement gage (IDG) was very sensitive to the appearance of damage at the crack tip, yielding nonlinear load-COD curves. The crack-tip damage in borsic/titanium was found to grow coplanarly with the original crack and consist of fiber breaks and matrix plastic deformation, the former preceding the latter. The failure mode and the crack-tip-damage growth were found to be different from those observed in unidirectional boron/aluminum and these differences are discussed. The examination techniques include radiography, SEM, photomicrographs, interference microscope and optical-interferometry technique. It was found that the fracture strengths and crack-tip-damage growth can be analyzed by the analytical models proposed in the literature. The resistance-curve method was also tried and found to be applicable. A correlation has been established among the fracture strength, crack-opening displacement and failure mode.  相似文献   

13.
Presence of fracture roughness and occurrence of nonlinear flow complicate fluid flow through rock fractures. This paper presents a qualitative and quantitative study on the effects of fracture wall surface roughness on flow behavior using direct flow simulation on artificial fractures. Previous studies have highlighted the importance of roughness on linear and nonlinear flow through rock fractures. Therefore, considering fracture roughness to propose models for the linear and nonlinear flow parameters seems to be necessary. In the current report, lattice Boltzmann method is used to numerically simulate fluid flow through different fracture realizations. Flow simulations are conducted over a wide range of pressure gradients through each fracture. It is observed that creeping flow at lower pressure gradients can be described using Darcy’s law, while transition to inertial flow occurs at higher pressure gradients. By detecting the onset of inertial flow and regression analysis on the simulation results with Forchheimer equation, inertial resistance coefficients are determined for each fracture. Fracture permeability values are also determined from Darcy flow as well. According to simulation results through different fractures, two parametric expressions are proposed for permeability and inertial resistance coefficient. The proposed models are validated using 3D numerical simulations and experimental results. The results obtained from these two proposed models are further compared with those obtained from the conventional models. The calculated average absolute relative errors and correlation coefficients indicate that the proposed models, despite their simplicity, present acceptable outcomes; the models are also more accurate compared to the available methods in the literature.  相似文献   

14.
Pore Scale Modeling of Rate Effects in Imbibition   总被引:3,自引:0,他引:3  
We use pore scale network modeling to study the effects of flow rate and contact angle on imbibition relative permeabilities. The model accounts for flow in wetting layers that occupy roughness or crevices in the pore space. Viscous forces are accounted for by solving for the wetting phase pressure and assuming a fixed conductance in wetting layers. Three-dimensional simulations model granular media, whereas two-dimensional runs represent fracture flow.We identify five generic types of displacement pattern as we vary capillary number, contact angle, and initial wetting phase saturation: flat frontal advance, dendritic frontal advance, bond percolation, compact cluster growth, and ramified cluster growth. Using phase diagrams we quantify the range of physical properties under which each regime is observed. The work explains apparently inconsistent experimental measurements of relative permeability in granular media and fractures.  相似文献   

15.
Interfacial fracture is a critical issue for extensive applications of adhesively bonded structures to a variety of modern industries. Extensive global experimental tests have been conducted to measure the global behavior of adhesively bonded joint, such as ultimate load capacity and toughness. Recently, several studies have also been employed to characterize the local interfacial traction–separation laws. However, very few tests have investigated the dependency of the local interfacial constitutive laws on the adhesive thickness, particularly, under Mode-II loading conditions. In this work, six typical adhesive thicknesses (from 0.1 mm to 1.0 mm) are prepared for the bonded joints with a configuration of end notched flexure (ENF) specimen to realize the Mode-II fracture loading (shear fracture). With a recently developed analytical model, the global energy release rates of the ENF specimens are experimentally measured. Meanwhile, with the image analysis technique, the local slips between the two adherends are obtained. Finally, based on the J-integral theory, the local interfacial constitutive laws at different bondline thicknesses are obtained. Several experimental findings are reported in this work. This work may provide valuable baseline experimental data for the input in cohesive zone model (CZM) based analytical and numerical simulations.  相似文献   

16.
The development of predictive models for plate end debonding failures in beams strengthened with thin soffit plates is a topic of great practical relevance. After the early stress-based formulations, fracture mechanics approaches have become increasingly established. More recently, the cohesive zone (CZ) model has been successfully adopted as a bridge between the stress- and fracture mechanics-based treatments. However, the few studies of this nature propose complex formulations which can only be implemented numerically. To date, the only available analytical solution based on CZ modeling for the prediction of interfacial stresses/debonding in plated beams is limited to the determination of interfacial shear stresses and thus neglects the mixed-mode effects generated by the presence of interfacial normal stresses at the plate end. This paper presents a new analytical formulation based on the CZ modeling approach for the prediction of plate end debonding in plated beams. A key enhancement with respect to the previous solution is the use of a coupled mixed-mode CZ model, which enables a full account of mixed-mode effects at the plate end. The model describes the evolution of the interface after the end of the elastic regime, and predicts the value of the load at incipient debonding. The achievement of a closed-form solution for this quite complex case entails the introduction of a crucial simplifying assumption, as well as the ad hoc modeling of an effective cohesive interfacial response. The paper presents the analytical theory and compares its predictions with numerical and experimental results.  相似文献   

17.
18.
This article is the first investigation on the dual permeability flow issue for horizontal well-production in a naturally fractured dual-porosity reservoir. Based on the inter-porosity flow from matrix system to fracture system and treating the media directly connected with horizontal wellbore as matrix and fracture systems, we established a model of horizontal well-production and then solved the model using some modern mathematical methods, such as Laplace integral transformation, separation of variables, eigenvalue, and eigenfunction. Later in the article, we obtained the standard log–log type curves using numerical simulation and analyzed the transient flow behavior thoroughly, which showed it is dual porosity and dual permeability flow behavior. The numerical simulation results showed that there are obvious differences between dual permeability and single permeability models. The dual permeability flow behavior accelerates energy supplement during production and reduces the classical matrix-fracture (V-shaped) response. We also showed that type curves characteristics are affected by external boundary conditions, the parameter κ, ω f and λ mf, etc. The research results show that our model would be a good semi-analytical model supplied to users. Because the single permeability modeling ignores the direct fluid supply from matrix to wellbore, we recommend using the dual permeability modeling to make well testing and rate decline interpretation in real case studies.  相似文献   

19.
We present results from a systematic study of relative permeability functions derived from two-phase lattice Boltzmann (LB) simulations on X-ray microtomography pore space images of Bentheimer and Berea sandstone. The simulations mimic both unsteady- and steady-state experiments for measuring relative permeability. For steady-state flow, we reproduce drainage and imbibition relative permeability curves that are in good agreement with available experimental steady-state data. Relative permeabilities from unsteady-state displacements are derived by explicit calculations using the Johnson, Bossler and Naumann method with input from simulated production and pressure profiles. We find that the nonwetting phase relative permeability for drainage is over-predicted compared to the steady-state data. This is due to transient dynamic effects causing viscous instabilities. Thus, the calculated unsteady-state relative permeabilities for the drainage is fundamentally different from the steady-state situation where transient effects have vanished. These effects have a larger impact on the invading nonwetting fluid than the defending wetting fluid. Unsteady-state imbibition relative permeabilities are comparable to the steady-state ones. However, the appearance of a piston-like front disguises most of the displacement and data can only be determined for a restricted range of saturations. Relative permeabilities derived from unsteady-state displacements exhibit clear rate effects, and residual saturations depend strongly on the capillary number. We conclude that the LB method can provide a versatile tool to compute multiphase flow properties from pore space images and to explore the effects of imposed flow and fluid conditions on these properties. Also, dynamic effects are properly captured by the method, giving the opportunity to examine differences between steady and unsteady-state setups.  相似文献   

20.
The purpose of the present work is to study the mixed mode fracture of a piezoelectric–piezomagnetic composite with two un-coaxial cracks parallel to the interface and each in a layer. Methods of generalized dislocation simulation, Green’s function, Cauchy singular integral equation and Lobatto–Chebyshev collocation are combined together to get the numerical results of mechanical strain energy release rate (MSERR). Three kinds of effects are revealed by parametric studies, i.e., the free-surface effect, the shielding effect and the interference effect, and they are used to interpret the characteristics of COD and MSERR curves. In addition, the effects of shear loading, magnetic loading and electric loading on MSERR are also disclosed, respectively, by varying the corresponding loading factor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号