首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
Summary As the transition state for the solvolysis of [Co(NH3)5Cl]2+ ions is known to have Cl- ions in a situation closely similar to that in the bulk solvent, the kinetics of this solvolysis have been investigated for comparison in H2O with added cosolvents of low and high hydrophobicities. A linear variation of log(rate constant) with the reciprocal of the dielectric constant is found with the former, but not with the latter cosolvent. Maxima in the enthalpies and entropies of activation found using the more hydrophobic cosolvent appear at solvent compositions where extrema occur in the physical properties influenced by structural changes in the solvent. The application of a free energy cycle to the solvolysis in H2O and in the mixtures shows that the emergent solvated cobalt(III) ion in the transition state is more stabilised in the latter than [Co(NH3)5Cl]2+ with both cosolvents. The application of such a cycle to cases where the initial state is destabilised in the mixture is discussed.  相似文献   

2.
Summary Rate constants are reported for mercury(II)-catalysed aquation of thetrans-[Rh(en)2Cl2]+, [Cr(NH3)5Cl]2+, andcis-[Cr(NH3)4(OH2)Cl]2+ cations in water and in methanol-, ethanol-, and acetonitrile-water solvent mixtures. In the case oftrans-[Rh(en)2Cl2]+, the dependence of rate constants on mercury(II) concentration indicates reaction through a binuclear (Rh-Cl-Hg bridged) intermediate. The dependence of the equilibrium constant for the formation of this intermediate and of its rate constant for dissociation (loss of HgCl+) on solvent composition have been established. With the aid of measured solubilities, published ancillary thermodynamic data, and suitable extrathermodynamic assumptions, the observed reactivity trends for these mercury(II)-catalysed aquations are dissected into initial state and transition state components. The reactivity patterns for these three complexes are compared with those for mercury(II)-catalysed aquation of other chloro-transition metal complexes, particularlycis-[Rh(en)2Cl2]+, [Co(NH3)5Cl]2+, and [ReCl6]2–.  相似文献   

3.
The electron transfer reaction between [Ru(NH3)5pz]2+ and [Co(C2O4)3]3? was studied in the presence of monomers and aggregates of bile salts (sodium deoxycholate, sodium taurodeoxycholate, and sodium glycocholate) at 298.2 ± 0.1 K. The results show a decreasing rate constant with the successive addition of bile salts. To rationalize the trends of the reaction rate on the [bile salts], two models were used. One of them takes into account the aggregation feature by considering a stepwise self‐association between monomers, whereas the other assumes the formation of a critical micellar concentration. Binding constants between [Ru(NH3)5pz]2+ species and deoxycholate or taurodeoxycholate aggregates were higher than that for glycocholate aggregates. These results are consistent with the way in which the monomers are added to form the bile anion aggregates.  相似文献   

4.
The rate constants for the replacement of water from the inner-coordination shell of Co(NH3)5OH23+, I, by dimethyl sulfoxide (DMSO) as DMSO gradually replaced water in the solvation shell of I were found to approach, and finally equal, the water-exchange rate constant of I in aqueous media in accordance with expectation for a dissociative mechanism. Also the rate constants for the replacement of DMSO from the innercoordination shell of Co(NH3)5DMSO3+, II, by water as water replaced DMSO in the solvation shell of II were found to approach, and approximately equal, the DMSO-exchange rate constant for II in liquid DMSO in accordance with expectation for a dissociative mechanism. The DMSO-exchange rate constant for II in liquid DMSO was determined and found to be equal to (3.6 ± 0.8) × 10?4 sec?1 at 45°C. The dissociation quotient, [II] [NO3?]/[Co(NH3)5NO32+], was found to be equal to 0.28 ± 0.11 M at 45°C by NMR methods. The pseudo first-order rate constants for anation of II by NO3? and the solvation of Co(NH3)5NO3 2+ by DMSO were determined at various temperatures.  相似文献   

5.
The kinetics of electron transfer reactions between [Fe(CN)6]4? and [Co(NH3)5pz]3+ and between [Ru(NH3)5pz]2+ and [Co(C2O4)3]3? was studied in concentrated salt solutions (Na2SO4, LiNO3, and Ca(NO3)2). An analysis of the experimental kinetic data, kobs, permits us to obtain the true (unimolecular) electron transfer rate constants corresponding to the true electron transfer process (precursor complex → successor complex), ket. The variations of both, kobs and ket, with salt concentrations are opposite for these reactions. These opposite tendencies can be rationalized by using the Marcus–Hush treatment for electron transfer reactions. The conclusion is that the negative salt effect found for the first reaction ([Fe(CN)6]4? + [Co(NH3)5pz]3+) is due to the increase of the reaction and reorganization free energies when the concentration of salt increases. In the case of the second reaction ([Ru(NH3)5pz]2+ + [Co(C2O4)3]3?), the positive salt effect observed is caused by the fact that the driving force becomes more favorable when the concentration of salt increases. Thus, it is shown that for anion/cation electron transfer reactions the kinetic salt effect depends on the charge sign of the oxidant (and the reductant). © 2004 Wiley Periodicals, Inc. Int J Chem Kinet 37: 81–89, 2005  相似文献   

6.
Rate constants for the reaction of [Fe(CN)5(H2O)]–3 with [Co(NH3)5(pyrazine)]3+ have been analysed on the basis of a pre-association equilibrium constant and a rate constant for the subsequent ligand interchange. The latter represents an unusual parameter, a rate constant for water loss from a low-spin iron(II) centre.  相似文献   

7.
The electron‐transfer reaction of some surfactant cobalt(III) complexes, cis‐[Co(ip)2(C12H25NH2)2]3+ 1 , cis‐[Co(dpq)2(C12H25NH2)2]3+ 2 , and cis‐[Co(dpqc)2(C12H25NH2)2]3+ 3 (ip = imidazo[4,5‐f][1,10]phenanthroline, dpq = dipyrido[3,2‐d:2′‐3′‐f]quinoxaline, dpqc = dipyrido[3,2‐a:2′,4′‐c](6,7,8,9‐tetrahydro)phenazine, C12H25NH2 = dodecylamine) with the Fe(CN)64? ion has been investigated in microheterogeneous media (micelles, β‐cyclodextrin) at different temperatures by the spectrophotometric method under pseudo‐first‐order conditions using an excess of the reductant. Experimentally, the reaction was found to be second order and the electron transfer postulated as an outer sphere. The rate constant for the electron‐transfer reaction in micelles was found to increase with an increase in the initial concentration of the surfactant–cobalt(III) complex. This peculiar behavior of dependence of the second‐order rate constant on the initial concentration of one of the reactants has been attributed to the presence of various concentrations of micelles under different initial concentrations of the surfactant–cobalt(III) complex in the reaction medium. Inclusion of the long aliphatic chain of the surfactant complex ion into β‐cyclodextrin leads to decrease in the rate constant. Kinetic data and activation parameters are interpreted in terms of an outer‐sphere electron‐transfer mechanism. All these results have been interpreted in terms of the hydrophobic effect and the reactants with the opposite charge.  相似文献   

8.
The surfactantCo(III) complexes of the type cis-[Co(en)2AX]2+ (A?=?Tetradecylamine, X?=?Cl?,?Br?) were synthesised from corresponding dihalogeno complexes by the ligand substitution method. The critical micelle concentration (CMC) values of these surfactant complexes in aqueous solution were obtained from conductance measurements. The kinetics and mechanism of iron(II) reduction of surfactantCo(III) complexes, cis-[Co(en)2(C14H29NH2)Cl](ClO4)2 and cis-[Co(en)2(C14H29NH2)Br] (ClO4)2 ions were studied spectrophotometrically in an aqueous acid medium by following the disappearance of Co(III) using an excess of the reductant under pseudo-first-order conditions: [Fe(II)]?=?0.25?mol?dm?3, [H+]?=?0.1?mol?dm?3, [μ]?=?1.0?mol?dm?3 ionic strength in a nitrogen atmosphere at 303, 308 and 313?K. The reaction was found to be of second order and showed acid independence in the range [H+]?=?0.05–0.25?mol?dm?3. The second-order rate constant increased with surfactant–Co(III) concentration and the presence of aggregation of the complex itself altered the reaction rate. The effects of [Fe(II)], [H+] and [μ] on the rate were determined. Activation and thermodynamic parameters were computed. It is suggested that the reaction of [Fe(II)] with Co(III) complex proceeds by an inner-sphere mechanism.  相似文献   

9.
Kinetic studies of solvent structure effects and solute–solvent interactions on the solvolysis of [Co(NH3)5Cl]2+ complex ion have been investigated spectrophotometrically in binary aqueous mixtures. Three cosolvents were used (acetonitrile, dimethylsulfoxide, and urea) over a wide range of temperatures. Nonlinear plots were found for log(rate constant) against the reciprocal of the relative permitivity of the medium. The enthalpy and entropy of activation (ΔH# and ΔS#) exhibited extrema in the same composition region where the physical properties indicate sharp changes in the structure of the solvent, confirming that the solvent structure is an important factor in determining the solvolytic reactivity. © 2008 Wiley Periodicals, Inc. Int J Chem Kinet 40: 416–422, 2008  相似文献   

10.
From extraction measurements, the individual extraction constant of the hexamminecobalt (III) cation, [Co(NH3)6]3+, in water-nitrobenzene system has been determined . Further, using known thermodynamic parameters and general relations, the stability constant of the complex [Co(NH3)6]3+ in nitrobenzene saturated with water was evaluated for 25 °C in the form log nb{[Co(NH3)6]3+}=54.1.  相似文献   

11.
Density functional theory (B3LYP, B3LYP-D3, wB97XD, M062X, and M06L) and ab initio methods (MP2 and CCSD(T)) in conjunction with 6-31+G(d,p) and LanL2DZ were employed to investigate the interaction energies between [Co(NH3)5NO2]2+ linkage isomers and chloride and nitrate in both gas phase and solid state. The nature of the chemical bonding has been analyzed by means of the atoms in molecules, electron density shift, natural bond orbitals, symmetry adapted perturbation theory, and energy decomposition analysis. The electronic structures of the two lowest laying singlet states (So and S1) of [Co(NH3)5NO2](NO3)Cl isomers were also investigated using CASSCF(6,6) with LanL2DZ and 6-31G(d) basis sets. Our results show that [Co(NH3)5NO2]2+ linkage isomers interact more strongly with chloride than nitrate. The structures of [Co(NH3)5NO2](NO3)Cl linkage isomers and their relative stabilities were examined in gas phase and in solid state and confirmed the nitro-complex as the most stable following by a viable intermediate endo-complex. Study of the nitro-nitrito linkage isomerization in [Co(NH3)5NO2](NO3)Cl revealed that anions form strong electrostatic bonds with [Co(NH3)5NO2]2+ leading to decrease in an activation energy compared to the [Co(NH3)5ONO]2+ isomers. A concerted action of ionic interactions and hydrogen bonds are suspected of regulating the isomerization in solid state. Assessment of various DFT methods with respect to CCSD(T) suggests M062X suitable method for [Co(NH3)5NO2](NO3)Cl linkage-isomerization study. Potential energy surface calculations at the CASSCF/6-31G(d) level of theory shows that the conical intersection (S1/So) might play an important role in the photoisomerization of [Co(NH3)5NO2](NO3)Cl.  相似文献   

12.
The positronium spin exchange (SE) reactions promoted by the 3d complexes Mn aq 2+ , Co aq 2+ , [Cr(NH3)6]3+, [Cr(NH3)5H2O]3+, and [Cr(H2O)5Cl2+] were investigated at different temperatures in order to ascertain whether they were diffusion controlled like those promoted by Cr aq 3+ , Fe aq 2+ , Ni aq 2+ and [Ni(NH3)6] aq 2+ ions studied previously.It was found that the reactions are diffusion controlled and that the effective reaction radii deduced from the Smoluchowski equation are smaller than the compound radii calculated from bond lengths and angles. It was also found that the rate constants, and therefore the reaction radii, are correlated with the spin—orbit coupling of 3d unpaired electrons and ligand capabilities to cause expansion of the d-electron cloud (nephelauxetic effect). In particular the effective reaction radii of SE reactions promoted by 3d complexes increase as the electron delocalization from 3d atoms increases.Work supported by Ministero Università e Ricerca Scientifica e Tecnologica (M.U.R.S.T.) and by Consiglio Nazionale Ricerche (C.N.R.).  相似文献   

13.
We have measured, by means of ultrafast x‐ray absorption and optical spectroscopy, the M‐O (M=Fe, Co) and Co‐N metal to ligand bond length change as a function of time and the formation and decay of the excited states and intermediate species, after excitation with a 267 nm femtosecond pulse. These experimental data combined with DFT calculations allowed us to determine the mechanism of electron transfer operating in the redox reaction of two metal‐ligand complexes, [M(III)(C2O4)3]3‐ and [Co(III)(NH3)6 ]3+. Based on the data we find that, even though both molecules are excited into their charge transfer band, the redox reaction of [M(III)(C2O4)3]3‐ proceeds via intermolecular electron transfer while [Co(III)(NH3)6 ]3+ electron transfer mechanism is intramolecular.  相似文献   

14.
The equilibrium quotients for the formation of Co(NH3)5Cl2+ from Co(NH3)5OH23+ and Cl? were 3.74±0.25 M?1 and 6.07±0.54 M?1 at 45.0°C in 10:1 mole ratio water: dimethyl sulfoxide and in 25 w/w % aqueous ethanol, respectively, and those forthe formation of the ion pair Co(NH3)5OH23+ . Cl? were 1.21±0.20 M?1 and 1.58±0.17 M?1, respectively, in the same solvents. The aquation and anation rateconstants were determined at 45.0°C for these two solvents over the range of chloride-ion concentrations 0.0 ≤ [Cl?] ≤ 0.9 M. The aquation rate constant was essentially independent of chloride-ion concentration in each solvent over this range. The inverse of the pseudo-first-order anation rate constant was linearly dependent on the inverse of the chloride-ion concentration in each solvent. The least squares relationships between (1/kan) and (1/[Cl?]) gave intercepts and ratios of intercept to slope which were analyzed interms of Id and D mechanisms. It was concluded that the data were not satisfied by a D mechanism, but that they were consistent with an Id mechanism.  相似文献   

15.
Tetra-azidodiamminecobaltates(III): cis-[Co(N3)4(NH3)2]? and [Co(N3)4en]? The preparation and the properties of complexes containing the anions cis-[Co(N3)4(NH3)2]? and [Co(N3)4en]? are described. The compounds [Co(NH3)6][Co(N3)4(NH3)2 · H2O], [Co(N3)2(NH3)4][Co(N3)4(NH3)2], [As(C6H5)4][Co(N3)4en], cis- and trans-[Co(N3)2en2][Co(N3)4en] have been isolated.  相似文献   

16.
Summary The kinetics of reversible complexation of NiII and CoII with iminodiacetato(pentaammine)cobalt(III), [(NH3)5-Co(idaH2)]3+ and NiII with iminodiacetato(tetraammine)-cobalt(III), [(NH3)4Co(idaH)]2+, have been investigated by the stopped-flow technique at 25 °C, pH = 5.7–6.9 and I = 0.3 mol dm –3. The reaction paths (NH3)5Co(idaH)2++M2+(NH3)5Co(ida)M3++H+ (NH3)5Co(ida)++M2+(NH3)5Co(ida)M3+ (NH3)4Co(ida)++Ni2+(NH3)4Co(ida)Ni3+ have been identified (idaH = N+H2(CH2CO2)2H, ida = NH(CH2COO)2–]. The rate parameters for the formation and dissociation of the binuclear species are reported. The data are essentially consistent with an I d mechanism. The dissociation rate constants of the binuclear species indicate that Ni2+ and Co2+ are chelated by the coordinated iminodiacetate moiety.  相似文献   

17.
The outer-sphere electron-transfer reactions between [Co(III)(NH3)5L] (CIO4)3 [L = polyethyleneimine (PEI), L = NH3(Amm)] or cis-[Co(III)(en)2L′Cl]Cl2 [L′ = poly-N-vinyl-2-methylimidazole(PVI), poly-4-vinylpyridine (PVP), N-ethylimidazole (NEI), pyridine (Py)] and various Fe(II) were studied. In the reaction with Fe(II)-(phen)32+, the reactivity of Co(III)–PEI was smaller than that of Co(III)–Amm due to the larger electrostatic repulsion. On the other hand, the reactivity of Co(III)–PEI was larger by a factor of 80 in the reaction with Fe(II)(H2O)62+. From the results of rapid-scanning spectroscopy, the higher reactivity of Co(III)–PEI is caused by the coordination of free ethyleneimine residues in the Co(III)–PEI to Fe(II)–ion. Further more, the hydrophobic interaction between heteroaromatic polymer ligands and Fe(II)-(phen)32+ brought about the higher reactivities of Co(III)–PVI and Co(III)–PVP. Three interactions caused by the essential properties of polymers are discussed in relation to conformational changes.  相似文献   

18.
The preparation of trans-[Co(NH3)4(CH3NH2)Br]2+ and trans-[Co(NH3)4(CH3NH2)-(NO3)]2+ complexes is described. The UV-VIS spectra of the complexes indicate a decrease of the ligand field compared to the parent pentaammines. Infrared spectra match with the pattern of the corresponding pentaammines. The catalyzed (by Hg2+) aquation of the trans-bromomethylamine complex go under retention of the stereochemical configuration. The base hydrolysis (studied at 25°C) products show trans to cis rearrangement for both complexes. 1H NMR spectroscopy is used for identification of the stereochemical configuration of the compounds.  相似文献   

19.
The reductions of [Co(CN)5NO2]3−, [Co(NH3)5NO2]2+ and [Co(NH3)5ONO]2+, by TiIII in aqueous acidic solution have been studied spectrophotometrically. Kinetic studies were carried out using conventional techniques at an ionic strength of 1.0 mol dm−3 (LiCl/HCl) at 25.0 ± 0.1 °C and acid concentrations between 0.015 and 0.100 mol dm−3. The second-order rate constant is inverse—acid dependent and is described by the limiting rate law:- k2 ≈ k0 + k[H+]−1,where k=k′Ka and Ka is the hydrolytic equilibrium constant for [Ti(H2O)6]3+. Values of k0 obtained for [Co(CN)5NO2]3−, [Co(NH3)5NO2]2+ and [Co(NH3)5ONO]2+ are (1.31 ± 0.05) × 10−2 dm3 mol−1 s−1, (4.53 ± 0.08) × 10−2 dm3 mol−1 s−1 and (1.7 ± 0.08) × 10−2 dm3 mol−1 s−1 respectively, while the corresponding k′ values from reductions by TiOH2+ are 10.27 ± 0.45 dm3 mol−1 s−1, 14.99 ± 0.70 dm3 mol−1 s−1 and 17.93 ± 0.78 dm3 mol−1 s−1 respectively. Values of K a obtained for the three complexes lie in the range (1–2) × 10−3 mol dm−3 which suggest an outer-sphere mechanism.  相似文献   

20.
The kinetics and mechanism of reduction of the surfactant-cobalt(III) complex ions, cis-[Co(bpy)2(C12H25NH2)2]3+ and cis-[Co(phen)2(C12H25NH2)2]3+ (bpy = bipyridyl, phen = 1,10-phenan-throline, C12H25NH2 = dodecylamine) by Fe(CN6)4− in self-micelles were studied at different temperatures. Experimentally the reaction was found to be second order and the electron transfer postulated as outersphere. The rate constant for the electron transfer reaction for both the complexes was found to increase with increase in the initial concentration of the surfactant-cobalt(III) complex. This peculiar behaviour of dependence of second-order rate constant on the initial concentration of one of the reactants has been attributed to the presence of various concentration of micelles under different initial concentration of the surfactantcobalt(III) complexes in the reaction medium. The effect of inclusion of the long aliphatic chain of the surfactant complex ions into β-cyclodextrin on these reactions has also been studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号