首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
翻转线圈系统在波荡器积分场测量中的应用   总被引:3,自引:2,他引:1       下载免费PDF全文
 为了更有效地测量用于上海同步辐射光源波荡器的积分场误差,在已有的伸展线磁测系统的基础上研制了一套翻转线圈磁测系统,该系统的运动控制、数据采集和数据分析处理均可自动完成。在利用这套磁测系统测量3.4×10-6 T·m磁场积分时获得高于1×10-6 T·m的测量精度,初步的实验结果表明这套波荡器积分磁场测量系统具有测量精度好、速度快的特点,与已有的伸展线磁测系统、平移线圈磁测系统和霍尔点测系统相比,它更适合于测量波荡器的一、二次场积分和多极场分量。  相似文献   

2.
用模拟退火法进行纯永磁波荡器磁块组合优化   总被引:1,自引:1,他引:0       下载免费PDF全文
 纯永磁波荡器由多个磁块组成,磁块的剩磁离散性会引起波荡器磁场误差,从而影响储存环工作状态和自发辐射谱质量。在波荡器磁块安装之前,使用模拟退火法对磁块进行组合排序优化,可以使峰值场强误差降低到10 -4量级以下,磁场一次积分降低到10-6 T·m量级,二次积分降低到10 -6 T·m 2量级,优化结果不依赖于初始状态的选择。给出优化的详细过程,提出了根据磁块剩磁快速计算波荡器峰值场强误差和积分场的方法。  相似文献   

3.
上海深紫外自由电子激光波荡器的端部磁结构设计   总被引:1,自引:1,他引:0       下载免费PDF全文
 针对固定间隙的上海深紫外自由电子激光(SDUV-FEL)混合型波荡器的端部,用Radia程序进行了模拟计算。在端部不加任何电磁线圈补偿的情况下,通过减小端部磁铁、磁极的体积和变动端部磁极位置的方法对波荡器磁场进行了优化,优化以后波荡器横向磁场的边缘场强度降到5×10-4 T(距离端部磁块边缘10 mm处),边缘场波形没有了明显突起,优化后的横向磁场的一次积分曲线和二次积分曲线都有很大改善,端口处的一次积分值、二次积分值接近于零。  相似文献   

4.
 介绍了兰州重力加速器冷却储存环实验环二极磁铁积分长线圈测磁装置的构成,描述了实验环二极铁的分散性测量、横向分布测量、传递函数等测量内容及测量方法。实验环二极铁采用不断地加减硅钢铁片垫补和加调整线圈电流的方法来调整二极磁铁的有效长度来改变分散性。通过垫补和测量,二极磁铁的分散性在优化磁场时达到±2×10-4。同时给出了二极铁的横向分布和传递函数的测量结果。对二极铁的设计和加工进行了修正。  相似文献   

5.
 分析了采样定理与二次相位采样问题的关系;基于菲涅耳衍射公式,推导了离焦位置光场的计算方法,避免聚焦计算中遇到的二次相位采样问题。提出了等效输入场算法思想,将聚焦过程中遇到的插入元件等效为对源场的调制,从而不需要计算插入位置的光场,解决在离焦位置有任意多个相位板的传输计算中的二次相位采样问题。将由等效输入场算法得到的输出光强与由基于菲涅耳积分公式的光场解析式计算得到的光强进行对比,在0~100 mm范围内的各离焦位置,两者相对误差小于1013,从而证实了等效输入场算法的正确性。  相似文献   

6.
合肥同步辐射光源波动器UD-1物理设计   总被引:3,自引:1,他引:2       下载免费PDF全文
 介绍了国家同步辐射实验室二期工程新建波动器UD-1的物理设计,给出了设计参数和主要技术要求。从储存环电子束流的要求和用户对光源的要求两方面分析了波动器磁场品质应满足的技术指标,给出UD 1的磁场一次积分值应小于2×10-4T·m,二次积分值应小于2×10-4T·m 2,相位误差应小于10°。  相似文献   

7.
高功率超短激光脉冲信噪比的研究   总被引:2,自引:0,他引:2       下载免费PDF全文
 针对高功率激光系统中信噪比低的问题,基于描述超短脉冲传输的非线性薛定谔方程进行数值模拟,研究了高阶群速度色散、光谱调制及自相位调制对脉冲信噪比的影响;新建立了用于分析光栅平整度对脉冲信噪比的影响的物理模型并进行了相应的模拟,分析了光栅的质量要求或补偿精度。研究表明:对于100 fs的高斯脉冲,要保证信噪比达到108,应将三阶色散量限制在4.8×105 fs3以下,B积分的值应小于0.2,光谱的调制幅度应小于10-4,光栅平整度应优于λ/100。  相似文献   

8.
梅花  陈洪  尧江明  孟杰 《中国物理 C》2006,30(Z2):53-55
在包含了奇时间分量的三轴形变相对论平均场理论框架下, 研究了轻奇-奇镜 像核12B和12N的基态性质, 如结合能差、均方根半径以及形变等, 并且分析了矢量介子场空间分量对基态性质, 特别是单粒子能级的影响.  相似文献   

9.
19F+93Nb耗散反应产物激发函数中截面测量的不重复性   总被引:1,自引:0,他引:1  
完成了19F+93Nb重离子耗散碰撞激发函数的两次独立测量.束流的入射能量为100—108MeV,步长250keV.两次测量的宏观条件几乎完全一样,惟一的差别是使用了厚度分别为70和71μg/cm2的两块93Nb同位素靶.实验结果表明:(1)两次测量所得到的耗散反应产物激发函数的涨落具有不可平滑的结构;(2)这种不平滑的涨落截面有不重复的迹象.着重从实验的角度对这一结果进行了讨论.  相似文献   

10.
磁多极场场参数的理论计算与分析   总被引:1,自引:0,他引:1       下载免费PDF全文
李国峰  孙克忱  梁科  郑旭  马志翘  王锦 《物理学报》2007,56(8):4523-4534
根据磁多极场的对称性,首先导出了磁多极场磁场分量的泰勒级数展开式,定义了磁多极场的场参数,然后根据毕奥-萨伐尔定律,导出了马鞍型磁多极场线圈的场参数理论计算公式.对各个场参数数量级的大小进行了分析,找出了场参数的递推规律,给出了场参数高阶导数的计算方法,从而能够准确计算整个空间的磁场值.还从简单单根导线计算结果过渡到多根导线或具有某种连续分布的情况. 这对于磁二极场、磁四极场、磁六极场等的应用提供了可靠的理论依据. 关键词: 磁多极场 场参数 马鞍型线圈  相似文献   

11.
Dynamic slice-wise shimming improves B0 field homogeneity by updating shim coil currents for every slice in a multislice acquisition, producing better field homogeneity over a volume than can be obtained by a single static global shim. The first aim of this work was to evaluate the performance of slice-wise field-map-based second-order dynamic shimming in a human high-field 7 T clinical scanner vis-à-vis image based second order static global shimming. Another goal was to characterize eddy currents induced by second and third order shim switching. A final aim was to compare global and dynamic shimming through shim orders to elucidate the relative benefits of going to higher orders and to dynamic shim updating from a static shimming regime. An external hardware module was used to store and dynamically update slice-optimized shim values during multislice data acquisition. High-bandwidth multislice gradient echo scans with B0 field mapping and low-bandwidth single-shot echo planar scans were performed on phantoms and humans using second-order dynamic and static global shims. For the measurement of second and third order shim induced eddy currents, step response temporal phase changes of individual shims were measured and fit to shim harmonics spatially and to multiexponential decay functions temporally. Finally, an order-wise field-map-based comparison was performed with first, second and third order global static shimming, first and second order dynamic shimming, as well as combined second or third order global and first order dynamic shim. Dynamic shimming considerably improved B0 homogeneity compared to static global shimming both in phantoms and in human subjects, reducing image distortion and signal dropout. The unshielded second and third order shims generated strong B0 and self and cross-term eddy fields, with multiple time constants ranging from milliseconds to seconds. Field homogeneity improved with increasing order of shim, with dynamic shimming performing better than global shimming. Hybrid global and dynamic shimming approach yielded field homogeneity better than global static shims but worse than dynamic shims.  相似文献   

12.
The use of high magnetic fields increases the sensitivity and spectral dispersion in magnetic resonance spectroscopy (MRS) of brain metabolites. Practical limitations arise, however, from susceptibility-induced field distortions, which are increased at higher magnetic field strengths. Solutions to this problem include optimized shimming, provided that active, i.e., electronic, shimming can operate over a sufficient range. To meet our shim requirements, which were an order of magnitude greater than the active shim capacity of our 7T MR system, we developed a combined passive and active shim approach. Simple geometries of ferromagnetic shim elements were derived and numerically optimized to generate a complete set of second-order spherical harmonic shim functions in a modular manner. The major goals of the shim design were maximization of shim field accuracy and ease of practical implementation. The theoretically optimized ferro-shim geometries were mounted on a cylindrical surface and placed inside the magnet bore, surrounding the subject's head and the RF coil. Passive shimming generated very strong shim fields and eliminated the worst of the field distortions, after which the field was further optimized by flexible and highly accurate active shimming. Here, the passive-shimming procedure was first evaluated theoretically, then applied in phantom studies and subsequently validated for in vivo 1H MRS in the macaque visual cortex. No artifacts due to the passive shim setup were observed; adjustments were reproducible between sessions. The modularity and the reduction to two pieces per shim term in this study is an important simplification that makes the method applicable also for passive shimming within single sessions. The feasibility of very strong, flexible and high-quality shimming via a combined approach of passive and active shimming is of great practical relevance for MR imaging and spectroscopy at high field strengths where shim power is limited or where shimming of specific anatomical regions inherently requires strong shim fields.  相似文献   

13.
A subject-specific local in vivo passive shimming method, focusing on the prefrontal and temporal regions, is proposed. The aim of the investigation is to show that subject variability exists in optimal passive shimming and that the proposed method can be effectively used to overcome these differences. A shimming structure capable of adjusting the position of the passive shims to within a millimeter resolution is built. The optimal shim positions for each individual subject are computed from obtained field map using a convex optimization algorithm. Passive shim experiments at predetermined fixed shim positions vs. individually adjusted shim positions were performed and compared. The results show that intersubject variability exists in the optimal shim positions and that the location-sensitive method proposed can be useful for improving main field homogeneity in vivo.  相似文献   

14.
Dynamic shimming in multi-slice imaging aims to achieve optimal magnetic field homogeneity by updating the shim coil currents for each slice in real time. Dynamic shimming may reduce the signal loss and geometric distortion caused by magnetic susceptibility variations between tissues and is likely to be valuable for fast T2*-sensitive imaging techniques like EPI. A computer simulation of dynamic shimming using real image data has been developed to demonstrate the effectiveness of higher order dynamic shimming for echo planar imaging at high magnetic field, and to investigate the potential benefits of different orders of shim coil. Geometric distortions and signal intensities for different degrees of dynamic shimming were simulated and the results are compared with the images obtained with a conventional shimming technique. These results demonstrate the effectiveness, necessity and difficulty of high order dynamic shimming.  相似文献   

15.
胡洋  王秋良  李毅  朱旭晨  牛超群 《物理学报》2016,65(21):218301-218301
在磁共振成像设备中,为了消除目标区域内的高阶谐波磁场分量,传统方法采用无源匀场,但该方法匀场精度较低,针对性较差,适用于全局匀场,而有源匀场则可以通过优化线圈分布来产生所需要的特定的磁场分布.但是,由于匀场线圈线型的复杂度会随着线圈阶数的增加而增加,难以满足设计需要,因此本文提出了一种用于磁共振成像超导匀场线圈系统的多变量非线性优化设计方法.该方法基于边界元方法,将匀场线圈所产生的磁场与目标磁场之间的偏差作为目标函数,线匝间距、线圈半径等作为约束条件,通过非线性优化算法,得到满足设计要求的线圈分布.通过一个中心磁场为0.5 T的开放式双平面磁共振成像超导轴向匀场线圈的设计案例,说明本方法具有计算效率高、灵活性好的特点.  相似文献   

16.
High quality magnetic field homogenization of the human brain (i.e. shimming) for MR imaging and spectroscopy is a demanding task. The susceptibility differences between air and tissue are a longstanding problem as they induce complex field distortions in the prefrontal cortex and the temporal lobes. To date, the theoretical gains of high field MR have only been realized partially in the human brain due to limited magnetic field homogeneity.A novel shimming technique for the human brain is presented that is based on the combination of non-orthogonal basis fields from 48 individual, circular coils. Custom-built amplifier electronics enabled the dynamic application of the multi-coil shim fields in a slice-specific fashion. Dynamic multi-coil (DMC) shimming is shown to eliminate most of the magnetic field inhomogeneity apparent in the human brain at 7 T and provided improved performance compared to state-of-the-art dynamic shim updating with zero through third order spherical harmonic functions. The novel technique paves the way for high field MR applications of the human brain for which excellent magnetic field homogeneity is a prerequisite.  相似文献   

17.
An optimized passive shimming method with iron shims is presented in this paper. First, the influence value of a single iron or magnetized shim is fast calculated and determined by analytic solution with a single practical measurement. Then, the correlation between the influence value and parameters of a single shim is analyzed, and the proper parameters, including the position, polarity, and size (radius and thickness), of the shimming pieces are well selected. Finally, the numbers and locations of the passive shims are optimized by mixed-integer linear programming method based on a modified central magnetic field. The optimized method is applied to a 0.5 T Bi-planar permanent magnet magnetic resonance imaging system, and the presented results prove the efficacy of this optimized passive shimming methodology.  相似文献   

18.
Low-field nuclear magnetic resonance magnet(2 MHz) is required for rock core analysis. However, due to its low field strength, it is hard to achieve a high uniform B_0 field only by using the passive shimming. Therefore, active shimming is necessarily used to further improve uniformity for Halbach magnet. In this work, an equivalent magnetic dipole method is presented for designing shim coils. The minimization of the coil power dissipation is considered as an optimal object to minimize coil heating effect, and the deviation from the target field is selected as a penalty function term. The lsqnonlin optimization toolbox of MATLAB is used to solve the optimization problem. Eight shim coils are obtained in accordance with the contour of the stream function. We simulate each shim coil by ANSYS Maxwell software to verify the validity of the designed coils. Measurement results of the field distribution of these coils are consistent with those of the target fields.The uniformity of the B_0 field is improved from 114.2 ppm to 26.9 ppm after using these shim coils.  相似文献   

19.
Many technical and logistical questions must be addressed when planning the installation of an NMR imaging system. These considerations become particularly significant when the facility is being established within an existing medical center complex. This paper presents a report on the practical aspects and experience obtained in siting a 6-coil 0.15 T resistive magnet system. The topics discussed include: floor loading; ferromagnetic environment; the effect of iron on the magnet field strength and homogeneity characteristics; shimming procedures; temperature stability requirements; rf shielding; and effects of the magnetic field on common medical instrumentation and magnetic media. It was found that the field shift as a function of the distance of a steel mass from the center of the magnet exhibited an (1/r)5.2±0.5 to (1/r)4.2±0.3 dependence for axial and radial positions respectively which, as expected, is somewhat weaker than the (1/r)6 dependence expected by point dipole approximations. Field distortions caused by the presence of ferromagnetic material in radial positions may be essentially fully compensated with first order transverse shim coils (most conveniently, the x and y imaging gradient coils could be used). Axially distributed material requires, in addition to first order z-gradient correction, higher order axial shim compensation. The temperature stability of the magnet system over the scan period must be better than 0.2°C to insure that temperature-induced field fluctuations are less than the intrinsic static inhomogeneity: and, ideally, below 0.01°C to reduce these fluctuations to less than those caused by power supply instability.  相似文献   

20.
Dynamic B(0) shimming (DS) can produce better field homogeneity than static global shimming by dynamically updating slicewise shim values in a multislice acquisition. The performance of DS however is limited by eddy current fields produced by the switching of 2nd and 3rd order unshielded shims. In this work, we present a novel method of eddy field compensation (EFC) applied to higher order shim induced eddy current fields in multislice DS. This method does not require shim shielding, extra hardware for eddy current compensation or subject specific prescanning. The interactions between shim harmonics are modeled assuming steady state of the medium and long time constant, cross and self term eddy fields in a DS experiment and 'correction factors' characterizing the entire set of shim interactions are derived. The correction factors for a given time between shim switches are shown to be invariable with object scanned, shim switching pattern and actual shim values, allowing for their generalized prospective use. Phantom and human head, 2nd and 3rd order DS experiments performed without any hardware eddy current compensation using the technique show large reductions in field gradients and offsets leading to significant improvements in image quality. This method holds promise as an alternative to expensive hardware based eddy current compensation required in 2nd and 3rd order DS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号