首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mössbauer method was used to study a perovskite compound Bi0.9Ca0.1FeO3 at T = 295 K and at temperature above T N . It has been established that Bi0.9Ca0.1FeO3 has a rhombohedral crystal structure similar to that of BiFeO3. The substitution of Ca2+ for Bi3+ ions leads to the formation of three states of Fe3+ ions with an octahedral surroundings and one state with a tetrahedral oxygen surroundings with substantially different hyperfine magnetic fields. All Fe ions are in a trivalent state; the compensation of the charge deficit occurs via the formation of oxygen vacancies. Above T N , two structurally nonequivalent states of Fe3+ ions exist in the Bi0.9Ca0.1FeO3 sample, which correspond to the Fe3+ ions with an octahedral and tetrahedral oxygen coordination.  相似文献   

2.
The perovskite Bi0.5Ca0.5FeO3 has been investigated using the Mössbauer effect at temperatures of 295 and 675 K. The measured temperature of the magnetic phase transition (Néel temperature) is T N = 640 ± 10 K. Above the Néel temperature, there are two nonequivalent structural states of iron ions. In the perovskite Bi0.5Ca0.5FeO3 at room temperature, there are seven most probable nonequivalent magnetic states of iron ions with significantly different values of the hyperfine interaction parameters. Four iron states correspond to Fe3+ ions in the octahedral oxygen environment, and three iron states correspond to Fe3+ ions in the tetrahedral oxygen environment.  相似文献   

3.
Optical and FTIR spectroscopic measurements and electron paramagnetic resonance (EPR) properties have been utilized to investigate and characterize the given compositions of binary bismuth silicate glasses. In this work, it is aimed to study the possibility of using the prepared bismuth silicate glasses as a good shielding material for γ-rays in which adding bismuth oxide to silicate glasses causes distinguish increase in its density by an order of magnitude ranging from one to two more than mono divalent oxides. The good thermal stability and high density of the bismuth-based silicate glass encourage many studies to be undertaken to understand its radiation shielding efficiency. For this purpose a glass containing 20% bismuth oxide and 80% SiO2 was prepared using the melting–annealing technique. In addition the effects of adding some alkali heavy metal oxides to this glass, such as PbO, BaO or SrO, were also studied. EPR measurements show that the prepared glasses have good stability when exposed to γ-irradiation. The changes in the FTIR spectra due to the presence of metal oxides were referred to the different housing positions and physical properties of the respective divalent Sr2+, Ba2+ and Pb2+ ions. Calculations of optical band gap energies were presented for some selected glasses from the UV data to support the probability of using these glasses as a gamma radiation shielding material. The results showed stability of both optical and magnetic spectra of the studied glasses toward gamma irradiation, which validates their irradiation shielding behavior and suitability as the radiation shielding candidate materials.  相似文献   

4.
A new trivalent bismuth ion conducting solid electrolyte, (BixGe1 − x)4/(4 − x)Ta(PO4)3, was successfully developed by selecting the NASICON-type GeTa(PO4)3 as the mother solid. Although bismuth has two kinds of valence states of + 3 and + 5, it was clear that pure trivalent Bi3+ ion conduction, without any electronic conduction by a valence change of bismuth in the oxygen pressure range over 10− 3 Pa, was realized by selecting the crystal structure and constituents of the solid.  相似文献   

5.
通过透射光谱、x射线激发发射光谱(XSL)的测试,研究了Bridgman法生长的几种不同+3价离子掺杂钨酸铅晶体的发光性能,并利用正电子湮没寿命谱(PAT)和x光电子能谱(XPS)的实验手段,对不同钨酸铅晶体的微观缺陷进行研究.实验表明,不同的+3价离子掺杂,对钨酸铅晶体发光性能的改善不同,并使得晶体中正电子俘获中心和低价氧的浓度发生不同变化.其中掺镧晶体的正电子俘获中心和低价氧浓度均上升,而掺钇和掺铋晶体的正电子俘获中心和低价氧浓度均下降,掺锑晶体则出现了正电子俘获中心浓度上升、低价氧浓度下降的情况.提 关键词: 钨酸铅晶体 +3价离子掺杂 正电子湮没寿命谱 x光电子能谱  相似文献   

6.
The crystalline and magnetic structures and magnetic properties of La1?x BixMnO3+δ (0.4 ≤ x ≤ 0.6, 0 ≤ δ ≤ 0.06) manganites have been studied. The solid solutions having the stoichiometric oxygen content are shown to be orbitally ordered A-type antiferromagnets. An increase in the oxygen content above the stoichiometric value is found to cause Mn4+ ions in the perovskite lattice, to remove the cooperative Jahn-Teller distortions, and to form a long-range ferromagnetic order. This order becomes broken as the concentration of the tetravalent manganese ions increases further. The tendency toward breaking the ferromagnetic order increases with the bismuth content. The magnetic properties are interpreted in terms of superexchange interactions on the assumption of local lattice distortions induced by anisotropy of the 6s 2(Bi3+)-2p 6(O2?) chemical bonds.  相似文献   

7.
The inertness of the cleaved (0001) surface of a Bi2Se3 single crystal to oxidation has been demonstrated using X-ray photoelectron spectroscopy, as well as atomic-force and scanning tunneling microscopy and spectroscopy. No intrinsic bismuth and selenium oxides are formed on the surface after a month of storage in air. Atomically flat surfaces with macroscopic sizes (∼1 cm2) and rms roughness less than 0.1 nm have been prepared, and (1 × 1)-(0001) Bi2Se3 atomic structure has been resolved. The tunneling conductance measurements have shown that the energy dependence of the surface density of states is quasilinear in the band gap of Bi2Se3.  相似文献   

8.
With the aid of infrared spectroscopy it is shown that the bismuth ions in BaBiO3 are equivalent and that the charge distribution Ba2Bi3+Bi5+O6 is incorrect. In addition it is demonstrated that the bismuth ions are pentavalent in Ba2 TbBiO6, but tetravalent in Ba3PbBi2O9.  相似文献   

9.
Ultraviolet, visible and infrared spectral measurements were used to investigate prepared undoped and rare-earth doped (2.5%) bismuth silicate glasses (80% Bi2O3–20%SiO2) before and after being subjected to gamma irradiation (8?Mrad). The base bismuth silicate glass reveals strong extended UV–near visible absorption bands which are attributed to the presence of trace iron impurities in the raw materials together with absorption due to sharing of Bi3+ ions. The RE-doped samples show the same strong UV–near visible bands as the undoped glasses beside extra narrow characteristic bands mostly in the visible and near-infrared regions due to the respective studied rare-earth ions. The base undoped and all RE-doped samples except CeO2 sample reveal quite resistance to the effect of gamma irradiation due to heavy atomic mass Bi3+ ions present in high content (80%) and the rare-earth ions are known to be weakly affected due to the known 5s, 5p shielding. The exceptional effect of CeO2-doped sample is related to the ability of Ce3+ ions to change its oxidation state through photochemical reaction by irradiation or exchange with Fe3+ present as trace iron impurities. The FT infrared spectra of the prepared glasses reveal characteristic absorption bands which are related to the silicate groups together with the sharing of vibrational modes due to Bi–O groups. The IR spectra are slightly affected by gamma irradiation indicating the stability of the structural network groups consisting of SiO4 and BiO6 units.  相似文献   

10.
Highly textured bismuth oxide (Bi2O3) thin films have been prepared using anodic oxidation of electrodeposited bismuth films onto stainless steel substrates. The Bi2O3 films were uniform and adherent to substrate. The Bi2O3 films were characterized for their structural and electrical properties by means of X-ray diffraction (XRD), electrical resistivity and dielectric measurement techniques. The X-ray diffraction pattern showed that Bi2O3 films are highly textured along (1 1 1) plane. The room temperature electrical resistivity of the Bi2O3 films was 105 Ω cm. Dielectric measurement revealed normal oxide behavior with frequency.  相似文献   

11.
Er/Bi codoped SiO2 thin films were prepared by sol-gel method and spin-on technology with subsequent annealing process. The bismuth silicate crystal phase appeared at low annealing temperature while vanished as annealing temperature exceeded 1000 °C, characterized by X-ray diffraction, and Rutherford backscattering measurements well explained the structure change of the films, which was due to the decrease of bismuth concentration. Fine structures of the Er3+-related 1.54 μm light emission (line width less than 7 nm) at room temperature was observed by photoluminescence (PL) measurement. The PL intensity at 1.54 μm reached maximum at 800 °C and decreased dramatically at 1000 °C. The PL dependent annealing temperature was studied and suggested a clear link with bismuth silicate phase. Excitation spectrum measurements further reveal the role of Bi3+ ions for Er3+ ions near infrared light emission. Through sol-gel method and thermal treatment, Bi3+ ions can provide a perfect environment for Er3+ ion light emission by forming Er-Bi-Si-O complex. Furthermore, energy transfer from Bi3+ ions to Er3+ ions is evidenced and found to be a more efficient way for Er3+ ions near infrared emission. This makes the Bi3+ ions doped material a promising application for future erbium-doped waveguide amplifier and infrared LED.  相似文献   

12.
Single crystal Bi0.19MoO3 has been grown by fused salt electrolytic technique. X-ray powder diffraction shows that the unit cell parameters are: a=1.9985nm, b=0.4085nm and c=1.4437nm. The temperature dependence of resistivity demonstrates a semiconductor characteristic. X-ray photoemission spectroscopy studies provide that the valence band of Bi0.19MoO3 are made up of oxygen pπ and the π*, π and σ bonding bands formed by orbital combination. The shoulder at 0.4 eV near the top of valence band may be formed from the non-bonding dxy orbitals of some Mo atoms. The O1s core-electron spectrum reveals the presence of two inequivalent bonds of oxygen ions in Bi0.19MoO3. Bi4f core-level spectrum shows two bonding characters of Bi atoms in bismuth molybdenum oxide single crystals. Mo3d core-level spectrum could be decomposed into two kinds of valence states of molybdenum(Mo+5 and Mo+6).  相似文献   

13.
Monoclinic bismuth oxide (Bi2O3) films have been prepared by thermal oxidation of vacuum evaporated bismuth thin films onto the glass substrates. In order to obtain the single phase Bi2O3, the oxidation temperature was varied in the range of 423-573 K by an interval of 50 K. The as-deposited bismuth and oxidized Bi2O3 films were characterized for their structural, surface morphological, optical and electrical properties by means of X-ray diffraction, scanning electron microscopy (SEM), optical absorption and electrical resistivity measurements, respectively. The X-ray analyses revealed the formation of polycrystalline mixed phases of Bi2O3 (monoclinic, α-Bi2O3 and tetragonal, β-Bi2O3) at oxidation temperatures up to 523 K, while at an oxidation temperature of 573 K, a single-phase monoclinic α-Bi2O3 was formed. From SEM images, it was observed that of as-deposited Bi films consisted of the well-defined isolated crystals of different shapes while after thermal oxidation the smaller dispersed grains were found to be merged to form bigger grains. The changes in the optical properties of Bi2O3 films obtained by thermal oxidation at various temperatures were studied from optical absorption spectra. The electrical resistivity measurement depicted semiconducting nature of Bi2O3 with high electrical resistivity at room temperature.  相似文献   

14.
(Y0.99Bi0.01)BO3 phosphor was prepared and its luminescent properties were investigated using the synchrotron radiation instrument in this paper. Site-selective luminescence of Bi3+ in the YBO3 host was demonstrated by exciting/monitoring with different wavelengths at low temperature in this research. At the same time, the energy transfer between the centers of Bi3+ ions occupying different symmetric sites was observed. The excited energy levels of Bi3+ were identified through assigning the emission and excitation spectra. The paths and mechanism of energy transfer between the centers of Bi3+ occupying different symmetric sites were discussed finally.  相似文献   

15.
Two Al-Mg-silicate glass sample sets with variable Bi2O3 content were prepared. One set was sintered by melting in an iridium crucible at 1850°C in nitrogen, the other—in alumina crucibles at 1550°C in air. Their absorption and emission properties were investigated and compared in the 200–1600 nm spectral range. It was determined that the visible range extinctions values of high-temperature melted samples were almost two orders of magnitude higher than those of the low-temperature melted samples with the same doping level. The concentration dependences of the extinction values at 500, 700 and 800 nm were nonlinear. The investigations allowed us to estimate the absolute concentrations of Bi3+ ions and NIR-emitting centers as well as the efficiency of the Bi3+ ions conversion into these centers. It was concluded that optical centers emitting at 1100 and 1300 nm contain a pair of bismuth ions. Speculations about some possible structures of Bi dimer NIR-emitting centers were made.  相似文献   

16.
A series of Bi3+/Eu3+ singly and doubly activated Ca4YO(BO3)3 phosphors were synthesized by solid-state reaction method. The structures and photoluminescent properties of the phosphors were investigated at room temperature. Under UV excitation Bi3+ and Eu3+ show a high light output. Ca4YO(BO3)3:Eu3+ has potential application as a phosphor for fluorescent lamps. The luminescence of Bi3+ and Eu3+ in Ca4YO(BO3)3 resembles more that in the rare earth oxides than that in borates. The free oxygen ion in the host lattice, which is not bonded to any boron ions seems to be responsible for that. In this host lattice energy migration between linear Eu3+ chains occurs. The emission of Bi3+ is completely quenched when Eu3+ is co-doped. A model was proposed to explain it.  相似文献   

17.
The Cu-Ni-M(III) mixed oxides (M = Al, Cr and In) were prepared by calcination of layered double hydroxide precursors with Cu2+/Ni2+/M3+ ratio of 1/2/1. The materials were characterized by means of powder X-ray diffraction (XRD), Fourier transform infrared (FT-IR), thermogravimetric-differential thermal analysis (TG-DTA), X-ray photoelectron spectroscopy (XPS) and low temperature N2 adsorption-desorption experiments. The results indicated that calcination of precursors at 500 °C gave rise to mixed metal oxides including simple oxides and composite oxides, and the composition distributions of obtained oxides depended on the nature of trivalent cation in precursors. Under mild experimental conditions (atmospheric pressure and 25 °C), oxidation of aqueous phenol solutions by hydrogen peroxide exhibited that the Cr-containing mixed oxide achieved the highest conversion of phenol owing to the presence of more amount of composite oxide phase containing active copper centers, while the aluminum-containing one could significantly enhance deep oxidation of phenol into smaller molecules owing to the presence of more surface oxygen species.  相似文献   

18.
T. Schalow  H.-J. Freund 《Surface science》2006,600(12):2528-2542
We have quantitatively studied the interaction between oxygen and an Fe3O4-supported Pd model catalyst by molecular beam (MB) methods, time resolved IR reflection absorption spectroscopy (TR-IRAS) and photoelectron spectroscopy (PES) using synchrotron radiation. The well-shaped Pd particles were prepared in situ by metal evaporation and growth under ultrahigh vacuum (UHV) conditions on a well-ordered Fe3O4 film on Pt(1 1 1).It is found that for oxidation temperatures up to 450 K oxygen predominantly chemisorbs on metallic Pd whereas at 500 K and above (∼10−6 mbar effective oxygen pressure) large amounts of Pd oxide are formed. These Pd oxide species preferentially form a thin layer at the particle/support interface, stabilized by the iron-oxide support. Their formation and reduction is fully reversible. Upon decomposition, oxygen is released which migrates back onto the metallic part of the Pd surface. In consequence, the Pd interface oxide layer acts as an oxygen reservoir, the capacity of which by far exceeds the amount of chemisorbed oxygen on the metallic surface.Additionally, Pd surface oxides can also be formed at temperatures above 500 K. The extent of surface oxide formation critically depends on the oxidation temperature. This effect is addressed to different onset temperatures for oxidation of the particle facets and sites. It is shown that the presence of Pd surface oxides sensitively modifies the adsorption and reaction properties of the model catalyst, i.e. by lowering the CO adsorption energy and CO oxidation probability. Still, a complete reduction of the Pd surface oxides can be obtained by extended CO exposure, fully reestablishing the metallic Pd surface.  相似文献   

19.
This paper investigates the structural, compositional and magnetic properties of vanadium doped ZnO bulk samples prepared by solid state reaction technique. The Rietveld refinement analysis for XRD results of samples showed small change in lattice parameters for 3 and 5% vanadium doped ZnO samples indicating the substitution of Zn2+ ions by vanadium ions in ZnO lattice. Raman spectroscopy reveals the change in ZnO modes positions due to vanadium doping. The appearance of E1 and E2 modes showed that the wurtzite structure of ZnO is still maintained after doping of vanadium oxide. XPS analysis confirms the presence of the different elements and oxidation states of vanadium ions. M-H curves obtained from VSM showed weak ferromagnetism in the samples. The observation of ferromagnetic behavior indicates the formation of ZnVO phase with V2+ ion substitution in the ZnO lattice. XPS scans of the etched bulk samples confirmed the 2+ oxidation state of vanadium ions in our samples explaining the origin of ferromagnetism.  相似文献   

20.
Isovalent rare earth oxide cubic stabilized bismuth oxides undergo an order-disorder transition of the oxygen sublattice ∼600 °C. Annealing below this temperature leads to a decay in conductivity due to ordering. We recently discovered a high conductivity Bi2O3 electrolyte doped with both Dy2O3 and WO3 (DyWSB). The dopants were selected based on their polarizability and its effect on both structural stability and conductivity. Electrical conductivity results of the stabilized bismuth oxide system as function of temperature and time are presented. By manipulating the composition ratio of the dopants, the structural stability was enhanced resulting in a more stable conductivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号