首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Studies have been conducted on the copper complexes formed with two sexadentate macrocyclic ligands containing four thioether sulfur donor atoms plus either two nitrogen or two oxygen donor atoms on opposing sides of the ring. The resulting two ligands, L, designated as [18]aneS(4)N(2) and [18]aneS(4)O(2), respectively, represent homologues of the previously studied Cu(ii/i) system with a macrocycle having six sulfur donor atoms, [18]aneS(6). Crystal structures of [Cu(II)([18]aneS(4)O(2))](ClO(4))(2) and [Cu(I)([18]aneS(4)O(2))]ClO(4) have been determined in this work. Comparison of the structures of all three systems reveals that the oxidized complexes are six coordinate with two coordinate bonds undergoing rupture upon reduction. However, the geometric changes accompanying electron transfer appear to differ for the three systems. The stability constants and electrochemical properties of both of the heteromacrocyclic complexes have been determined in acetonitrile and the Cu(II/I)L electron-transfer kinetics have been studied in the same solvent using six different counter reagents for each system. The electron self-exchange rate constants have then been calculated using the Marcus cross relationship. The results are compared to other Cu(II/I)L systems in terms of the effect of ligand geometric changes upon the overall kinetic behavior.  相似文献   

2.
The absolute magnitude of an "entatic" (constrained) state effect has never been quantitatively demonstrated. In the current study, we have examined the electron-transfer kinetics for five closely related copper(II/I) complexes formed with all possible diastereomers of [14]aneS(4) (1,4,8,11-tetrathiacyclotetradecane) in which both ethylene bridges have been replaced by cis- or trans-1,2-cyclohexane. The crystal structures of all five Cu(II) complexes and a representative Cu(I) complex have been established by X-ray diffraction. For each complex, the cross-reaction rate constants have been determined with six different oxidants and reductants in aqueous solution at 25 degrees C, mu = 0.10 M. The value of the electron self-exchange rate constant (k(11)) has then been calculated from each cross reaction rate constant using the Marcus cross relation. All five Cu(II/I) systems show evidence of a dual-pathway square scheme mechanism for which the two individual k(11) values have been evaluated. In combination with similar values previously determined for the parent complex, Cu(II/I)([14]aneS(4)), and corresponding complexes with the two related monocyclohexanediyl derivatives, we now have evaluated a total of 16 self-exchange rate constants which span nearly 6 orders of magnitude for these 8 closely related Cu(II/I) systems. Application of the stability constants for the formation of the corresponding 16 metastable intermediates--as previously determined by rapid-scan cyclic voltammetry--makes it possible to calculate the specific electron self-exchange rate constants representing the reaction of each of the strained intermediate species exchanging electrons with their stable redox partners--the first time that calculations of this type have been possible. All but three of these 16 specific self-exchange rate constants fall within--or very close to--the range of 10(5)-10(6) M(-1) s(-1), values which are characteristic of the most labile Cu(II/I) systems previously reported, including the blue copper proteins. The results of the current investigation provide the first unequivocal demonstration of the efficacy of the entatic state concept as applied to Cu(II/I) systems.  相似文献   

3.
Previous kinetic and electrochemical studies of copper complexes with macrocyclic tetrathiaethers-such as 1,4,8,11-tetrathiacyclotetradecane ([14]aneS4)-have indicated that electron transfer and the accompanying conformational change occur sequentially to give rise to a dual-pathway mechanism. Under appropriate conditions, the conformational change itself may become rate-limiting, a condition known as "gated" electron transfer. We have recently hypothesized that the controlling conformational change involves inversion of two donor atoms, which suggests that "gated" behavior should be affected by appropriate steric constraints. In the current work, two derivatives of [14]aneS4 have been synthesized in which one of the ethylene bridges has been replaced by either cis- or trans-1,2-cyclopentane. The resulting copper systems have been characterized in terms of their Cu(II/I)L potentials, the stabilities of their oxidized and reduced complexes, and their crystal structures. The electron self-exchange rate constants have been determined both by NMR line-broadening and by kinetic measurements of their rates of reduction and oxidation with six or seven counter reagents. All studies have been carried out at 25 degrees C, mu = 0.10 M (NaClO4 and/or Cu(ClO4)2), in aqueous solution. Both Cu(II/I) systems show evidence of a dual-pathway mechanism, and the electron self-exchange rate constants representative of both mechanistic pathways have been determined. The first-order rate constant for gated behavior has also been resolved for the Cu(I)(trans-cyclopentane-[14]aneS4) complex, but only a limiting value can be established for the corresponding cis-cyclopentane system. The rate constants for both systems investigated in this work are compared to values previously determined for the Cu(II/I) systems with the parent [14]aneS4 macrocycle and its derivatives involving phenylene and cis- or trans-cyclohexane substituents. The results are discussed in terms of the influence of the fused rings on the probable conformational changes accompanying the electron-transfer process.  相似文献   

4.
The two ethylene bridges in the macrocyclic tetrathiaether 1,4,8,11-tetrathiacyclotetradecane ([14]aneS(4)) have been systematically replaced by cis- or trans-1,2-cyclopentane to generate a series of new ligands that exhibit differing preferences for the orientation of the sulfur donor atoms while maintaining constant inductive effects. The resulting five dicyclopentanediyl derivatives, along with two previously synthesized monocyclopentanediyl analogues, have been complexed with Cu(II), and their stability constants, formation and dissociation rate constants, and redox potentials have been determined in 80% methanol/20% water (by weight). The crystal structures of the Cu(II) complexes with the five dicyclopentanediyl-[14]aneS(4) diastereomers as well as the structures for a representative Cu(I) complex and one of the free ligands have also been determined. The properties of these complexes are compared to previous data obtained for the corresponding cyclohexanediyl derivatives in an attempt to shed additional light on the influence of sterically constraining substituents upon the properties of macrocyclic ligand complexes.  相似文献   

5.
The mononuclear macrocyclic complexes [Au(I)([9]aneS2O)2]BF4 x MeCN 1a, [Au(II)([9]aneS2O)2](BF4)2 x 2 MeCN 2a, and [Au(III)([9]aneS2O)2](ClO4)6(H5O2)(H3O)2 3 ([9]aneS2O = 1-oxa-4,7-dithiacyclononane) have been prepared and structurally characterized by single crystal X-ray crystallography. The oxidation of [Au([9]aneS2O)2](+) to [Au([9]aneS2O)2](2+) involves a significant reorganization of the co-ordination sphere from a distorted tetrahedral geometry in [Au([9]aneS2O)2](+) [Au-S 2.3363(12), 2.3877(12), 2.6630(11), 2.7597(13) A] to a distorted square-planar co-ordination geometry in [Au([9]aneS2O)2](2+). The O-donors in [Au([9]aneS2O)2](2+) occupy the axial positions about the Au(II) center [Au...O = 2.718(2) A] with the S-donors occupying the equatorial plane [Au-S 2.428(8) and 2.484(8) A]. [Au([9]aneS2O)2](3+) shows a co-ordination sphere similar to that of [Au([9]aneS2O)2](2+) but with significantly shorter axial Au...O interactions [2.688(2) A] and equatorial Au-S bond lengths [2.340(4) and 2.355(6) A]. The cyclic voltammogram of 1 in MeCN (0.2 M NBu4PF6, 253 K) at a scan rate of 100 mV s(-1) shows an oxidation process at E(p)(a) = +0.74 V and a reduction process at E(p)(c) = +0.41 V versus Fc(+)/Fc assigned to the two-electron Au(III/I) couple and a second reduction process at E(p)(c) = +0.19 V assigned to the Au(I/0) couple. This electrochemical assignment is confirmed by coulometric and UV-vis spectroelectrochemical measurements. Multifrequency EPR studies of the mononuclear Au(II) complex [Au([9]aneS2O)2](2+) in a fluid solution at X-band and as frozen solutions at L-, S-, X-, K-, and Q-band reveal g(iso) = 2.0182 and A(iso) = -44 x 10(-4) cm(-1); g(xx) = 2.010, g(yy) = 2.006, g(zz) = 2.037; A(xx) = -47 x 10(-4) cm(-1), A(yy) = -47 x 10(-4) cm(-1), A(zz) = -47 x 10(-4) cm(-1); P(xx) = -18 x 10(-4) cm(-1), P(yy) = -10 x 10(-4) cm(-1), and P(zz) = 28 x 10(-4) cm(-1). DFT calculations predict a singly occupied molecular orbital (SOMO) with 27.2% Au 5d(xy) character, consistent with the upper limit derived from the uncertainties in the (197)Au hyperfine parameters. Comparison with [Au([9]aneS3)2](2+) reveals that the nuclear quadrupole parameters, P(ii) (i = x, y, z) are very sensitive to the nature of the Au(II) co-ordination sphere in these macrocyclic complexes. The observed geometries and bond lengths for the cations [Au([9]aneS2O)2](+/2+/3+) reflect the preferred stereochemistries of d(10), d(9), and d(8) metal ions, respectively, with the higher oxidation state centers being generated at higher anodic potentials compared to the related complexes [Au([9]aneS3)2](+/2+/3+).  相似文献   

6.
We report the synthesis and full characterization for a series of cyclometallated complexes of Pt(II) and Pd(II) incorporating the fluxional trithiacrown ligand 1,4,7-trithiacyclononane ([9]aneS3). Reaction of [M(C insertion mark N)(micro-Cl)]2 (M = Pt(II), Pd(II); C insertion mark N = 2-phenylpyridinate (ppy) or 7,8-benzoquinolinate (bzq)) with [9]aneS3 followed by metathesis with NH4PF6 yields [M(C insertion mark N)([9]aneS3)](PF6). The complexes [M(C insertion mark P)([9]aneS3)](PF6) (M = Pt(II), Pd(II); Cinsertion markP = [CH2C6H4P(o-tolyl)2-C,P]-) were synthesized from their respective [Pt(C insertion mark P)(micro-Cl)]2 or [Pd(C insertion mark P)(micro-O2CCH3)]2 (C insertion mark P) starting materials. All five new complexes have been fully characterized by multinuclear NMR, IR and UV-Vis spectroscopies in addition to elemental analysis, cyclic voltammetry, and single-crystal structural determinations. As expected, the coordinated [9]aneS3 ligand shows fluxional behavior in its NMR spectra, resulting in a single 13C NMR resonance despite the asymmetric coordination environment of the cyclometallating ligand. Electrochemical studies reveal irreversible one-electron metal-centered oxidations for all Pt(II) complexes, but unusual two-electron reversible oxidations for the Pd(II) complexes of ppy and bzq. The X-ray crystal structures of each complex indicate an axial M-S interaction formed by the endodentate conformation of the [9]aneS3 ligand. The structure of [Pd(bzq)([9]aneS3)](PF6) exhibits disorder in the [9]aneS3 conformation indicating a rare exodentate conformation as the major contributor in the solid-state structure. DFT calculations on [Pt([9]aneS3)(ppy)](PF6) and [Pd([9]aneS3)(ppy)](PF6) indicate the HOMO for both complexes is primarily dz2 in character with a significant contribution from the phenyl ring of the ppy ligand and p orbital of the axial sulfur donor. In contrast, the calculated LUMO is primarily ppy pi* in character for [Pt([9]aneS3)(ppy)](PF6), but dx2-y2 in character for [Pd([9]aneS3)(ppy)](PF6).  相似文献   

7.
Complex formation and dissociation rate constants have been independently determined for solvated nickel(II) ion reacting with eight macrocyclic tetrathiaether ligands and one acyclic analogue in acetonitrile at 25 degrees C, mu = 0.15 M. The macrocyclic ligands include 1,4,8,11-tetrathiacyclotetradecane ([14]aneS4) and seven derivatives in which one or both ethylene bridges have been substituted by cis- or trans-1,2-cyclohexane, while the acyclic ligand is 2,5,9,12-tetrathiatridecane (Me2-2,3,2-S4). In contrast to similar complex formation kinetic studies on Ni(II) reacting with corresponding macrocyclic tetramines in acetonitrile and N,N-dimethylformamide (DMF), the kinetics of complex formation with the macrocyclic tetrathiaethers show no evidence of slow conformational changes following the initial coordination process. The differing behavior is ascribed to the fact that such conformational changes require donor atom inversion, which is readily accommodated by thiaether sulfurs but requires abstraction of a hydrogen from a nitrogen (to form a temporary amide). The latter process is not facilitated in solvents of low protophilicity. The rate-determining step in the formation reactions appears to be at the point of first-bond formation for the acyclic tetrathiaether but shifts to the point of chelate ring closure (i.e., second-bond formation) for the macrocyclic tetrathiaether complexes. The formation rate constants for Ni(II) with the macrocyclic tetrathiaethers parallel those previously obtained for Cu(II) reacting with the same ligands in 80% methanol-20% water (w/w). By contrast, the Ni(II) dissociation rate constants show significant variations from the trends in the Cu(II) behavior. Crystal structures are reported for the Ni(II) complexes formed with all five dicyclohexanediyl-substituted macrocyclic tetrathiaethers. All but one are low-spin species.  相似文献   

8.
Reaction of [GeCl(2)(dioxane)] with [18]aneS(6) (1,4,7,10,13,16-hexathiacyclooctadecane) gives the neutral [GeCl(2)([18]aneS(6))] which forms a supramolecular sheet network involving exocyclic coordination, with the macrocycles bridging Ge atoms which are in a pseudo-trigonal bipyramidal environment from two Cl and two S atoms (saw-horse), with one lone pair assumed to occupy the remaining equatorial void. Conversely, using the mixed S/O macrocycles [18]aneS(3)O(3) (1,4,7-trithia-10,13,16-trioxacyclooctadecane) and [15]aneS(2)O(3) (1,4-dithia-7,10,13-trioxacyclopentadecane) (L) leads to the monocationic pentagonal pyramidal [GeCl(L)](+) whose structures show endocyclic Ge coordination, and displacement of one Cl. The Ge-S and Ge-O bond lengths are surprisingly disparate in these two complexes, and in the former the coordinated Cl is axial, while in the latter it occupies the pentagonal plane (with an S atom axial). Cyclic selenoethers form one-dimensional or two-dimensional supramolecular assemblies with Ge(ii) halides, including [GeCl(2)([8]aneSe(2))] ([8]aneSe(2) = 1,5-diselenacyclooctane), [(GeCl(2))(2)([16]aneSe(4))] ([16]aneSe(4) = 1,5,9,13-tetraselenacyclohexadecane), [GeBr(2)([16]aneSe(4))] and [(GeI(2))(2)([16]aneSe(4))]·GeI(4)- these represent the first germanium species with selenoether ligation. Structural studies on each of these show exocyclic GeX(2) coordination, giving networks based upon Se(2)X(2) coordination at Ge(ii) with a distorted pseudo-trigonal bipyramidal environment in which the Ge-based lone pair is assumed to occupy the vacant equatorial vertex. Further weak GeX contacts are also evident in some cases. The weak, secondary GeS/Se and GeX interactions that pervade these systems may be regarded as a further type of supramolecular interaction allowing assembly of new network structures, and the long II contacts evident between the GeI(2) and GeI(4) units in [(GeI(2))(2)([16]aneSe(4))]·GeI(4) probably provide a small thermodynamic contribution leading to co-crystallisation of ordered GeI(4) molecules within the network.  相似文献   

9.
The Pd(II) complexes [Pd([9]aneS(3))(2)](PF(6))(2)·2MeCN (1) ([9]aneS(3) = 1,4,7-trithiacyclononane) and [Pd([18]aneS(6))](PF(6))(2) (2) ([18]aneS(6) = 1,4,7,10,13,16-hexathiacyclooctadecane) can be oxidized electrochemically or chemically oxidized with 70% HClO(4) to [Pd([9]aneS(3))(2)](3+) and [Pd([18]aneS(6))](3+), respectively. These centers have been characterized by single crystal X-ray diffraction, and by UV/vis and multifrequency electron paramagnetic resonance (EPR) spectroscopies. The single crystal X-ray structures of [Pd(III)([9]aneS(3))(2)](ClO(4))(6)·(H(3)O)(3)·(H(2)O)(4) (3) at 150 K and [Pd([18]aneS(6))](ClO(4))(6)·(H(5)O(2))(3) (4) at 90 K reveal distorted octahedral geometries with Pd-S distances of 2.3695(8), 2.3692(8), 2.5356(9) and 2.3490(6), 2.3454(5), 2.5474(6) ?, respectively, consistent with Jahn-Teller distortion at a low-spin d(7) Pd(III) center. The Pd(II) compound [Pd([9]aneS(3))(2)](PF(6))(2) shows a one-electron oxidation process in MeCN (0.2 M NBu(4)PF(6), 293 K) at E(1/2) = +0.57 V vs. Fc(+)/Fc assigned to a formal Pd(III)/Pd(II) couple. Multifrequency (Q-, X-, S-, and L-band) EPR spectroscopic analysis of [Pd([9]aneS(3))(2)](3+) and [Pd([18]aneS(6))](3+) gives g(iso) = 2.024, |A(iso(Pd))| = 18.9 × 10(-4) cm(-1); g(xx) = 2.046, g(yy) = 2.041, g(zz) = 2.004;?|A(xx(Pd))| = 24 × 10(-4) cm(-1), |A(yy(Pd))| = 22 × 10(-4) cm(-1), |A(zz(Pd))| = 14 × 10(-4) cm(-1), |a(xx(H))| = 4 × 10(-4) cm(-1), |a(yy(H))| = 5 × 10(-4) cm(-1), |a(zz(H))| = 5.5 × 10(-4) cm(-1) for [Pd([9]aneS(3))(2)](3+), and g(iso) = 2.015, |A(iso(Pd))| = 18.8× 10(-4) cm(-1); g(xx) = 2.048 g(yy) = 2.036, g(zz) = 1.998; |a(xx(H))| = 5, |a(yy(H))| = 5, |a(zz(H))| = 6 × 10(-4) cm(-1); |A(xx(Pd))| = 23× 10(-4) cm(-1), |A(yy(Pd))| = 22 × 10(-4) cm(-1), |A(zz(Pd))| = 4 × 10(-4) cm(-1) for [Pd([18]aneS(6))](3+). Both [Pd([9]aneS(3))(2)](3+) and [Pd([18]aneS(6))](3+) exhibit five-line superhyperfine splitting in the g(zz) region in their frozen solution EPR spectra. Double resonance spectroscopic measurements, supported by density functional theory (DFT) calculations, permit assignment of this superhyperfine to through-bond coupling involving four (1)H centers of the macrocyclic ring. Analysis of the spin Hamiltonian parameters for the singly occupied molecular orbital (SOMO) in these complexes gives about 20.4% and 25% Pd character in [Pd([9]aneS(3))(2)](3+) and [Pd([18]aneS(6))](3+), respectively, consistent with the compositions calculated from scalar relativistic DFT calculations.  相似文献   

10.
The present article describes ruthenium nitrosyl complexes with the {RuNO}(6) and {RuNO}(7) notations in the selective molecular frameworks of [Ru(II)([9]aneS(3))(bpy)(NO(+))](3+) (4(3+)), [Ru(II)([9]aneS(3))(pap) (NO(+))](3+) (8(3+)) and [Ru(II)([9]aneS(3))(bpy)(NO˙)](2+) (4(2+)), [Ru(II)([9]aneS(3))(pap)(NO˙)](2+) (8(2+)) ([9]aneS(3) = 1,4,7-trithiacyclononane, bpy = 2,2'-bipyridine, pap = 2-phenylazopyridine), respectively. The nitrosyl complexes have been synthesized by following a stepwise synthetic procedure: {Ru(II)-Cl} → {Ru(II)-CH(3)CN} → {Ru(II)-NO(2)} → {Ru(II)-NO(+)} → {Ru(II)-NO˙}. The single-crystal X-ray structure of 4(3+) and DFT optimised structures of 4(3+), 8(3+) and 4(2+), 8(2+) establish the localised linear and bent geometries for {Ru-NO(+)} and {Ru-NO˙} complexes, respectively. The crystal structures and (1)H/(13)C NMR suggest the [333] conformation of the coordinated macrocyclic ligand ([9]aneS(3)) in the complexes. The difference in π-accepting strength of the co-ligands, bpy in 4(3+) and pap in 8(3+) (bpy < pap) has been reflected in the ν(NO) frequencies of 1945 cm(-1) (DFT: 1943 cm(-1)) and 1964 cm(-1) (DFT: 1966 cm(-1)) and E°({Ru(II)-NO(+)}/{Ru(II)-NO˙}) of 0.49 and 0.67 V versus SCE, respectively. The ν(NO) frequency of the reduced {Ru-NO˙} state in 4(2+) or 8(2+) however decreases to 1632 cm(-1) (DFT: 1637 cm(-1)) or 1634 cm(-1) (DFT: 1632 cm(-1)), respectively, with the change of the linear {Ru(II)-NO(+)} geometry in 4(3+), 8(3+) to bent {Ru(II)-NO˙} geometry in 4(2+), 8(2+). The preferential stabilisation of the eclipsed conformation of the bent NO in 4(2+) and 8(2+) has been supported by the DFT calculations. The reduced {Ru(II)-NO˙} exhibits free-radical EPR with partial metal contribution revealing the resonance formulation of {Ru(II)-NO˙}(major)?{Ru(I)-NO(+)}(minor). The electronic transitions of the complexes have been assigned based on the TD-DFT calculations on their DFT optimised structures. The estimated second-order rate constant (k, M(-1) s(-1)) of the reaction of the nucleophile, OH(-) with the electrophilic {Ru(II)-NO(+)} for the bpy derivative (4(3+)) of 1.39 × 10(-1) is half of that determined for the pap derivative (8(3+)), 2.84 × 10(-1) in CH(3)CN at 298 K. The Ru-NO bond in 4(3+) or 8(3+) undergoes facile photolytic cleavage to form the corresponding solvent species {Ru(II)-CH(3)CN}, 2(2+) or 6(2+) with widely varying rate constant values, (k(NO), s(-1)) of 1.12 × 10(-1) (t(1/2) = 6.2 s) and 7.67 × 10(-3) (t(1/2) = 90.3 s), respectively. The photo-released NO can bind to the reduced myoglobin to yield the Mb-NO adduct.  相似文献   

11.
The electron self-exchange rate constants of blue copper model complexes, [(-)-sparteine-N,N'](maleonitriledithiolato-S,S')copper ([Cu(SP)(mmt)])(0/)(-), bis(2,9-dimethy-1,10-phenanthroline)copper ([Cu(dmp)(2)](2+/+)), and bis(1,10-phenanthroline)copper ([Cu(phen)(2)](2+/+)) have been determined from the rate constants of electron transfer from a homologous series of ferrocene derivatives to the copper(II) complexes in light of the Marcus theory of electron transfer. The resulting electron self-exchange rate constant increases in the order: [Cu(phen)(2)](2+/+) < [Cu(SP)(mmt)](0/)(-) < [Cu(dmp)(2)](2+/+), in agreement with the order of the smaller structural change between the copper(II) and copper(I) complexes due to the distorted tetragonal geometry. The dye-sensitized solar cells (DSSC) were constructed using the copper complexes as redox couples to compare the photoelectrochemical responses with those using the conventional I(3)(-)/I(-) couple. The light energy conversion efficiency (eta) values under illumination of simulated solar light irradiation (100 mW/cm(2)) of DSSCs using [Cu(phen)(2)](2+/+), [Cu(dmp)(2)](2+/+), and [Cu(SP)(mmt)](0/)(-) were recorded as 0.1%, 1.4%, and 1.3%, respectively. The maximum eta value (2.2%) was obtained for a DSSC using the [Cu(dmp)(2)](2+/+) redox couple under the light irradiation of 20 mW/cm(2) intensity, where a higher open-circuit voltage of the cell was attained as compared to that of the conventional I(3)(-)/I(-) couple.  相似文献   

12.
The preparations of the new complexes [AsBr(3)[MeS(CH(2))(2)SMe]], [AsX(3)([9]aneS(3))] (X = Cl, Br or I; [9]aneS(3) = 1,4,7-trithiacyclononane), [AsCl(3)([14]aneS(4))] ([14]aneS(4) = 1,4,8,11-tetrathiacyclotetradecane), [AsX(3)([8]aneSe(2))] ([8]aneSe(2) = 1,5-diselenacyclooctane), [(AsX(3))(2)([16]aneSe(4))] ([16]aneSe(4) = 1,5,9,13-tetraselenacyclohexadecane), and [(AsBr(3))(2)([24]aneSe(6))] ([24]aneSe(6) = 1,5,9,13,17,21-hexaselenacyclotetracosane) are described. These are obtained from direct reaction of the appropriate AsX(3) and 1 mol equiv of the thio- or selenoether ligand in anhydrous CH(2)Cl(2) (or thf for X = I) solution. The products have been characterized by microanalysis and IR and (1)H NMR spectroscopy. In solution they are extensively dissociated, reflecting the weak Lewis acidity of AsX(3). Reaction of AsX(3) with MeSe(CH(2))(2)SeMe or MeC(CH(2)EMe)(3) (E = S or Se) gave only oils. Treatment of PCl(3) or PBr(3) with Me(2)S, MeE(CH(2))(2)EMe, or [9]aneS(3) failed to give solid complexes, and there was no evidence from NMR spectroscopy for any adduct formation in solution. The crystal structures of the first series of thioether and selenoether complexes of As(III) are described: [AsBr(3)[MeS(CH(2))(2)SMe]], C(4)H(10)AsBr(3)S(2), a = 10.2818(6) A, b = 7.8014(5) A, c = 14.503(1) A, beta = 102.9330(2) degrees, monoclinic, P2(1)/c, Z = 4; [AsI(3)[MeS(CH(2))(2)SMe]], C(4)H(10)AsI(3)S(2), a = 9.1528(1) A, b = 11.5622(2) A, c = 12.0939(2) A, beta = 93.863(1) degrees, monoclinic, P2(1)()/n, Z = 4; [AsCl(3)([9]aneS(3))], C(6)H(12)AsCl(3)S(3), a = 17.520(4) A, b = 17.520(4) A, c = 16.790(7) A, tetragonal, I4(1)cd, Z = 16; [AsCl(3)([14]aneS(4))], C(10)H(20)AsCl(3)S(4), a = 13.5942(2) A, b = 7.7007(1) A, c = 18.1270(3) A, beta = 111.1662(5) degrees, monoclinic, P2(1)()/n, Z = 4; [(AsCl(3))(2)([16]aneSe(4))], C(12)H(24)As(2)Cl(6)Se(4), a = 9.764(3) A, b = 13.164(1) A, c = 10.627(2) A, beta = 114.90(1) degrees, monoclinic, P2(1)()/n, Z = 2; [(AsBr(3))(2)([16]aneSe(4))], C(12)H(24)As(2)Br(6)Se(4), a = 10.1220(1) A, b = 13.4494(2) A, c = 10.5125(2) A, beta = 113.49(2) degrees, monoclinic, P2(1)()/n, Z = 2. [AsBr(3)[MeS(CH(2))(2)SMe]] and [AsI(3)[MeS(CH(2))(2)SMe]] reveal discrete mu(2)-halo As(2)X(6) dimeric structures involving distorted octahedral As(III), with the dithioether ligand chelating. [AsCl(3)([9]aneS(3))] adopts a discrete molecular distorted octahedral geometry with the thioether behaving as a weakly coordinated fac-capping ligand. [AsCl(3)([14]aneS(4))] forms an infinite sheet involving two mu(2)-chloro ligands on each As but bridging to two distinct As centers. Each macrocycle coordinates to two adjacent As centers via one S atom, giving a cis-octahedral Cl(4)S(2) donor set at As(III). The structures of [(AsCl(3))(2)([16]aneSe(4))] and [(AsBr(3))(2)([16]aneSe(4))] adopt 2-dimensional sheet structures with mu(2)-dihalo As(2)X(6) dimers cross-linked by mu(4)-tetraselenoether macrocycles, giving a disorted cis-X(4)Se(2) donor set at each As center. These species are compared with their antimony(III) and bismuth(III) analogues where appropriate.  相似文献   

13.
The synthesis of dinuclear [Ru(II)([n]aneS(4))] (where n = 12, 14) complexes of the bridging ligand 3,6-bis(2-pyridyl)-1,2,4,5-tetrazine are reported. The X-ray structures of both of the new complexes are compared to a newly obtained structure for a dinuclear [Ru(II)([9]aneS(3))]-based analogue, whose synthesis has previously been reported. A comparison of the electrochemistry of the three complexes reveals that the first oxidation of the [Ru(II)([n]aneS(4))]-based systems is a ligand-based couple, indicating that the formation of the radical anion form of the bridging ligand is stabilized by metal center coordination. Spectroelectrochemistry studies on the mixed-valence form of the new complexes suggest that they are Robin and Day Class II systems. The electrochemical and electronic properties of these complexes is rationalized by a consideration of the pi-bonding properties of thiacrown ligands.  相似文献   

14.
Chan SC  Cheung HY  Wong CY 《Inorganic chemistry》2011,50(22):11636-11643
Ruthenium complexes containing 2-(2-nitrosoaryl)pyridine (ON(^)N) and tetradentate thioether 1,4,8,11-tetrathiacyclotetradecane ([14]aneS4), [Ru(ON(^)N)([14]aneS4)](2+) [ON(^)N = 2-(2-nitrosophenyl)pyridine (2a), 10-nitrosobenzo[h]quinoline (2b), 2-(2-nitroso-4-methylphenyl)pyridine, (2c), 2-(2-nitrosophenyl)-5-(trifluoromethyl)pyridine (2d)] and analogues with the 1,4,7-trithiacyclononane ([9]aneS3)/tert-butylisocyanide ligand set, [Ru(ON(^)N)([9]aneS3)(C≡N(t)Bu)](2+) (4a and 4b), have been prepared by insertion of a nitrosonium ion (NO(+)) into the Ru-aryl bond of cyclometalated ruthenium(II) complexes. The molecular structures of the ON(^)N-ligated complexes 2a and 2b reveal that (i) the ON(^)N ligands behave as bidentate chelates via the two N atoms and the bite angles are 86.84(18)-87.83(16)° and (ii) the Ru-N(NO) and N-O distances are 1.942(5)-1.948(4) and 1.235(6)-1.244(5) ?, respectively. The Ru-N(NO) and N-O distances, together with ν(N═O), suggest that the coordinated ON(^)N ligands in this work are neutral moiety (ArNO)(0) rather than monoanionic radical (ArNO)(?-) or dianion (ArNO)(2-) species. The nitrosated complexes 2a-2d show moderately intense absorptions centered at 463-484 nm [ε(max) = (5-6) × 10(3) dm(3) mol(-1) cm(-1)] and a clearly discriminable absorption shoulder around 620 nm (ε(max) = (6-9) × 10(2) dm(3) mol(-1) cm(-1)), which tails up to 800 nm. These visible absorptions are assigned as a mixing of d(Ru) → ON(^)N metal-to-ligand charge-transfer and ON(^)N intraligand transitions on the basis of time-dependent density functional theory (TD-DFT) calculations. The first reduction couples of the nitrosated complexes range from -0.53 to -0.62 V vs Cp(2)Fe(+/0), which are 1.1-1.2 V less negative than that for [Ru(bpy)([14]aneS4)](2+) (bpy = 2,2'-bipyridine). Both electrochemical data and DFT calculations suggest that the lowest unoccupied molecular orbitals of the nitrosated complexes are ON(^)N-centered. Natural population analysis shows that the amount of positive charge on the Ru centers and the [Ru([14]aneS4)] moieties in 2a and 2b is larger than that in [Ru(bpy)([14]aneS4)](2+). According to the results of the structural, spectroscopic, electrochemical, and theoretical investigations, the ON(^)N ligands in this work have considerable π-acidic character and behave as better electron acceptors than bpy.  相似文献   

15.
The quinquedentate macrocyclic ligand cyclo-6,6'-[1,9-(2,5,8-trithianonane)]-2,2'-bipyridine ([15]aneS3bpy = L), containing two pyridyl nitrogens and three thiaether sulfurs as donor atoms, has been synthesized and complexed with copper. The CuII/IL redox potential, the stabilities of the oxidized and reduced complex, and the oxidation and reduction electron-transfer kinetics of the complex reacting with a series of six counter reagents have been studied in acetonitrile at 25 degrees C, mu = 0.10 M (NaClO4). The Marcus cross relationship has been applied to the rate constants obtained for the reactions with each of the six counter reagents to permit the evaluation of the electron self-exchange rate constant, k11. The latter value has also been determined independently from NMR line-broadening experiments. The cumulative data are consistent with a value of k11 = 1 x 10(5) M(-1) s(-1), ranking this among the fastest-reacting CuII/I systems, on a par with the blue copper proteins known as cupredoxins. The resolved crystal structures show that the geometry of the CuIIL and CuIL complexes are nearly identical, both exhibiting a five-coordinate square pyramidal geometry with the central sulfur donor atom occupying the apical site. The most notable geometric difference is a puckering of an ethylene bridge between two sulfur donor atoms in the CuIL complex. Theoretical calculations suggest that the reorganizational energy is relatively small, with the transition-state geometry more closely approximating the geometry of the CuIIL ground state. The combination of a nearly constant geometry and a large self-exchange rate constant implies that this CuII/I redox system represents a true geometric "entatic state."  相似文献   

16.
The copper(II/I) complexes of hexathiaether macrocyclic ligand, 1,4,8,11,15,18-hexathiacyclohenicosane ([21]aneS6), were synthesized, and characterized by electrochemical and spectroscopic techniques. Cyclic voltammetric studies indicate that Cu([21]aneS6)2+/+ forms a reversible one-electron redox couple. The electrochemical potential obtained for Cu([21]aneS6)2+/+ (Ef = 0.89 V, against SHE) was found to be the highest potential reported to date for a Cu2+/+ macrocyclic system in aqueous solution. By employing the Nernst equation, we can infer that the practical upper limit for formal potential of Cu(II/I)L systems maybe close to this high value. Stability constant data obtained for these complexes indicate that Cu([21]aneS6)+is 12 orders of magnitude greater in stability than that of Cu([21]aneS6)2+ indicating the favorable nature of this large macrocyclic ligand towards formation of Cu(I) complexes over Cu(II) complexes. Crystal structure of Cu([21]aneS6)+ ( Fig. 2) shows that four sulfurs adjacent to one another are coordinated to Cu+ ion in this complex. Bond angles and distances calculated for the crystal indicate that it is a distorted tetrahedron, a geometry commonly encountered by Cu(I) complexes. This is the first report of synthesis and characterization of a metal coordinated [21]aneS6 complex.  相似文献   

17.
The mononuclear +2 oxidation state metal complexes [Au([9]aneS(3))(2)](2+) and [Ag([18]aneS(6))](2+) have been synthesized and characterized crystallographically. The crystal structure of the Au(II) species [Au([9]aneS(3))(2)](BF(4))(2) shows a Jahn-Teller tetragonally distorted geometry with Au-S(1) = 2.839(5), Au-S(2) = 2.462(5), and Au-S(3) = 2.452(5) A. The related Ag(II) complex [Ag([18]aneS(6))](ClO(4))(2) has been structurally characterized at both 150 and 30 K and is the first structurally characterized complex of Ag(II) with homoleptic thioether S-coordination. The single-crystal X-ray structure of [Ag([18]aneS(6))](ClO(4))(2) confirms octahedral homoleptic S(6)-thioether coordination. At 150 K, the structure contains two independent Ag(II)-S distances of 2.569(7) and 2.720(6) A. At 30 K, the structure retains two independent Ag(II)-S distances of 2.615(6) and 2.620(6) A, with the complex cation retaining 3-fold symmetry. The electronic structures of [Au([9]aneS(3))(2)](2+) and [Ag([18]aneS(6))](2+) have been probed in depth using multifrequency EPR spectroscopy coupled with DFT calculations. For [Au([9]aneS(3))(2)](2+), the spectra are complex due to large quadrupole coupling to (197)Au. Simulation of the multifrequency spectra gives the principal g values, hyperfine (A) and quadrupole (P) couplings, and furthermore reveals non-co-incidence of the principal axes of the P tensor with respect to the A and g matrices. These results are rationalized in terms of the electronic and geometric structure and reveal that the SOMO has ca. 30% Au 5d(xy)() character, consistent with DFT calculations (27% Au character). For [Ag([18]aneS(6))](2+), detailed EPR spectroscopic analysis confirms that the SOMO has ca. 26% Ag 4d(xy)() character and DFT calculations are consistent with this result (22% Ag character).  相似文献   

18.
Homogeneous electron transfer reactions of the Cu(II) complexes of 5,10,15,20-tetraphenylporphyrin (TPP) and 2,3,7,8,12,13,17,18-octaethylporphyrin (OEP) with various oxidizing reagents were spectrophotometrically investigated in acetonitrile. The reaction products were confirmed to be the pi-cation radicals of the corresponding Cu(II)-porphyrin complexes on the basis of the electronic spectra and the redox potentials of the complexes. The rate of the electron transfer reaction between the Cu(II)-porphyrin complex and solvated Cu(2+) was determined as a function of the water concentration under the pseudo first-order conditions where Cu(2+) is in large excess over the Cu(II)-porphyrin complex. The decrease in the pseudo first-order rate constant with increasing the water concentration was attributed to the stepwise displacement of acetonitrile in [Cu(AN)(6)](2+)(AN = acetonitrile) by water, and it was concluded that only the Cu(2+) species fully solvated by acetonitrile, [Cu(AN)(6)](2+), possesses sufficiently high redox potential for the oxidation of Cu(ii)-OEP and Cu(ii)-TPP. The reactions of the Cu(II)-porphyrin complexes with other oxidizing reagents such as [Ni(tacn)(2)](3+)(tacn = 1,4,7-triazacyclononane) and [Ru(bpy)(3)](3+)(bpy = 2,2'-bipyridine) were too fast to be followed by a conventional stopped-flow technique. Marcus cross relation for the outer-sphere electron transfer reaction was used to estimate the rate constants of the electron self-exchange reaction between Cu(II)-porphyrin and its pi-cation radical: log(k/M(-1) s(-1))= 9.5 +/- 0.5 for TPP and log(k/M(-1) s(-1))= 11.1 +/- 0.5 for OEP at 25.0 degrees C. Such large electron self-exchange rate constants are typical for the porphyrin-centered redox reactions for which very small inner- and outer-sphere reorganization energies are required.  相似文献   

19.
We report the measurement of 113Cd NMR chemical shift data for homoleptic thioether and related aza and mixed aza/thiacrown complexes. In a series of Cd(II) complexes containing trithioether to hexathioether ligands, we observe solution 113Cd NMR chemical shifts in the range of 225 to 731 ppm. Upfield chemical shifts in these NMR spectra are seen whenever: (a) the number of thioether sulfur donors in the complex is decreased, (b) a thioether sulfur donor is replaced by a secondary nitrogen donor, or (c) the size of the macrocycle ring increases without a change in the nature or number of the donor atoms. Changes in the identity of non-coordinating anions such as perchlorate or hexafluorophosphate have little effect upon the 113Cd NMR chemical shift in solution. We report the X-ray structure of the complex [Cd([12]aneS4)2](ClO4)2 ([12]aneS4 = 1,4,7,10-tetrathiacyclododecane) (1) which shows the first example of octakis(thioether) coordination of a metal ion, forming an unusual eight-coordinate square antiprismatic structure. We report the X-ray structure of the complex [Cd([9]aneS3)2](PF6)2 ([9]aneS3 = 1,4,7-trithiacyclononane) (3a) which shows hexakis(thioether) coordination to form a distorted octahedral structure. We have also prepared and characterized the Cd(II) complex of a mixed azathiacrown, [Cd([18]aneS4N2)](PF6)2 ([18]aneS4N2 = 1,4,10,13-tetrathia-7,16-diazacyclooctadecane) (6). Its X-ray structure shows a distorted octahedral S4N2 environment around the Cd(II) with the ligand coordinated in the rac fashion. We observe a solvent- and temperature-dependent 14N-1H coupling in the 1H NMR spectrum of the complex which is not present in analogous complexes with this ligand.  相似文献   

20.
Structural studies of metal complexes of five ditopic hexaazamacrocycles containing two pyridine rings ([n]py2N4 n= 18, 20, 22, 24 and 26) have been carried out. The synthesis of macrocycles [22]- to [26]-py2N4 are also reported. The protonation constants of the last three compounds and the stability constants of their complexes with Ni2+, Cu2+, Zn2+, and Pb2+ were determined at 25 degrees C in 0.10 mol dm(-3) KNO3 in aqueous solution. Our results with [22]py2N4 show significant differences from those described previously, while [24]py2N4 has not been studied before and [26]py2N4 is a new compound. Mononuclear and dinuclear complexes of the divalent metal ions studied with [22]- to [26]-py2N4 were found in solution. The stability constants for the ML complexes of the three ligands follow the Irving-Williams order: NiL2+ < CuL2+ > ZnL2+ > PbL2+, however for the dinuclear complexes the values for Pb2+ complexes are higher than the corresponding values for the Ni2+ and the Zn2+ complexes. The X-ray single crystal structures of the supramolecular aggregates [Cu2([20]py2N4)(H2O)4][Cu(H2O)6](SO4)3 x 3H2O and [Cu(2)([20]py(2)N4)(CH3CN)4][Ni([20]py2N4)]2(ClO4)8 x H2O, which are composed of homodinuclear [Cu2([20]py2N4])(H2O)4]4+ and [Cu2([20]py2N4])(CH3CN))4]4+, and mononuclear species, [Cu(H2O)6]2+ and [Ni([20]py2N4)]2+, respectively, assembled by an extensive network of hydrogen bonds, are also reported. In both homodinuclear complexes the copper centres are located at the end of the macrocycle and display distorted square pyramidal coordination environments with the basal plane defined by three consecutive nitrogen donors and one solvent molecule, water in and acetonitrile in . The macrocycle adopts a concertina-type conformation leading to the formation of macrocyclic cavities with the two copper centres separated by intramolecular distances of 5.526(1) and 5.508(7) A in 1a and 2a, respectively. The mononuclear complex [Ni([20]py2N4])]2+ displays a distorted octahedral co-ordination environment with the macrocycle wrapping the metal centre in a helical shape. EPR spectroscopy of the copper complexes indicated the presence of mono- and dinuclear species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号