首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The hypersonic flow past the nose of a spherical body containing current sources generating a magnetic field is investigated theoretically and numerically. The magnetohydrodynamic (MHD) flow is analyzed on the basis of the complete system of Navier-Stokes equations containing the force and thermal MHD terms and the electrodynamic equations. Local and integral thermal and aerodynamic characteristics of the body are found. It is shown that the presence of a magnetic field makes it possible to reduce the heat flow to the body in the neighborhood of the stagnation point by several times. However, in this case the total body drag increases.  相似文献   

2.
A general solution for 3D Stokes flow is given which is different from, and more compact than the existing ones and more compact than them in that it involves only two scalar harmonic functions. The general solution deduced is combined with the potential theory method to study the Stokes flow induced by a rigid plate of arbitrary shape translating along the direction normal to it in an unbounded fluid.The boundary integral equation governing this problem is derived. When the plate is elliptic, exact analytical results are obtained not only for the drag force but also for the velocity distributions. These results include and complete the ones available for a circular plate. Numerical examples are provided to illustrate the main results for circular and elliptic plates. In particular, the elliptic eccentricity of a plate is shown to exhibit significant influences.  相似文献   

3.
In order to investigate the characteristics of force chains in a granular flow system, a parallel plate shear cell is constructed to simulate the shear movement of an infinite parallel plate and observe variations in relevant parameters. The shear dilatancy process is divided into three stages, namely, plastic strain, macroscopic failure, and granular recombination. The stickslip phenomenon is highly connected with the evolution of force chains during the shear dilatancy process. The load–distribution rate curves and patterns of the force chains are utilized to describe the load-carrying behaviors and morphologic changes of force chains separately. Force chains, namely, “diagonal gridding,” “tadpole-shaped,” and “pinnate” are defined according to the form of the force chains in the corresponding three stages.  相似文献   

4.
A three-dimensional rarefied-gas flow past a spinning sphere in the transitional and near-continuum flow regimes is studied numerically. The rarefaction and compressibility effects on the lateral (Magnus) force and the aerodynamic torque exerted on the sphere are investigated for the first time. The coefficients of the drag force, the Magnus force, and the aerodynamic torque are found for Mach numbers ranging from 0.1 to 2 and Knudsen numbers ranging from 0.05 to 20. In the transitional regime, at a certain Knudsen number depending on the Mach number the Magnus force direction changes. This change is attributable to the increase in the role of normal stresses and the decrease in the contribution of the shear stresses to the Magnus force with decrease in the Knudsen number. A semi-empirical formula for the calculation of the Magnus force coefficient in the transitional flow regime is proposed.  相似文献   

5.
The continuous-flow squeeze film apparatus has been adapted to permit flow to take place in either direction. This simulates normal and reversed squeezing flow between discs by having liquid moving through the lower plate, with neither plate moving. The liquid exudes from 1580 uniformly-distributed holes in the plate surface. All tests were performed at a temperature of 24.0°C.Water is used in early tests, and it is shown that the contribution to load bearing from the inertia of the fluid is comparable in reverse and normal flows; fluid inertia increases the force which would be required to move the plates in either direction. A novel “mirror image” graphical presentation is used.Tests using a dilute polymer solution show load enhancement effects for both normal and reversed squeeze film flow. The enhancement is roughly equal in both directions of flow, with no transient effects, and fluid elasticity increases the force which would be required to move the plates in either direction. It is suggested that the stress developed in the fluid is independent of the direction of flow.The significance of the tests regarding lubricating problems is mentioned; the important case of rapid load reversal requires further attention.  相似文献   

6.
This study compares measurements of the streamwise integral length scale, the root mean square (r.m.s.) of the streamwise component of velocity, and the r.m.s. of the normal component of velocity obtained at the exit of a plate array with measurements obtained at the same position for the “open pipe case”. The “open pipe case” is defined as the empty tube, without the plates in place, i.e., the apparatus becomes grid flow entering an unobstructed pipe. In general, this study finds that the length scale in the streamwise direction decreases with increasing plate spacing while the r.m.s. velocity in the streamwise direction increases as the plate spacing increases for fixed values of x/M (i.e., the streamwise direction to mesh-spacing ratio). These measured trends are consistent with a simple model based on vortex elements and conservation of angular momentum.  相似文献   

7.
Generalizing Navier’s partial slip condition, the flow due to a rough or striated plate moving in a rotating fluid is studied. It is found that the motion of the plate, the fluid surface velocity, and the shear stress are in general not in the same direction. The solution is extended to the case of finite depth, or Couette slip flow in a rotating system. In this case an optimum depth for minimum drag is found. The solutions are also closed form exact solutions of the Navier–Stokes equations. The results are fundamental to flows with Coriolis effects.  相似文献   

8.
9.
The plane problem of the plate planing at a constant velocity on the surface of a heavy, ideal, incompressible, finite-depth fluid is considered. The approximate, depth-independent expression for the force acting on the plate is derived from the linear distribution of the fluid velocity along the plate and the height of the flow stagnation point, without regard for jet formation near the leading edge. In this approximate formulation the plate drag depends on its velocity and the trailing edge immersion and does not depend on the planing angle. Experiments and numerical calculations in the exact formulation are performed in the near-critical flow regimes. It is shown that the wave patterns in the experiments and numerical calculations coincide, the formula for the drag being in agreement with the numerical experiments. An approximate criterion of the formation of waves going away from the plate in the forward direction is proposed.  相似文献   

10.
An experimental study was conducted to investigate the aerodynamic characteristics of a bio-inspired corrugated airfoil compared with a smooth-surfaced airfoil and a flat plate at the chord Reynolds number of Re C  = 58,000–125,000 to explore the potential applications of such bio-inspired corrugated airfoils for micro air vehicle designs. In addition to measuring the aerodynamic lift and drag forces acting on the tested airfoils, a digital particle image velocimetry system was used to conduct detailed flowfield measurements to quantify the transient behavior of vortex and turbulent flow structures around the airfoils. The measurement result revealed clearly that the corrugated airfoil has better performance over the smooth-surfaced airfoil and the flat plate in providing higher lift and preventing large-scale flow separation and airfoil stall at low Reynolds numbers (Re C  < 100,000). While aerodynamic performance of the smooth-surfaced airfoil and the flat plate would vary considerably with the changing of the chord Reynolds numbers, the aerodynamic performance of the corrugated airfoil was found to be almost insensitive to the Reynolds numbers. The detailed flow field measurements were correlated with the aerodynamic force measurement data to elucidate underlying physics to improve our understanding about how and why the corrugation feature found in dragonfly wings holds aerodynamic advantages for low Reynolds number flight applications.  相似文献   

11.
As a result of the reporting of casual observations of the oscillation or rotation of the beacons in transmission line guard cables, some attention has been paid to the stability of the guard cables with beacons.The relatively more frequent observation of these motions has been explained in recent papers dealing with the elastic part of the problem as a consequence of the increasing number of resonant frequencies (one for each additional beacon) that can be excited by appropriate aerodynamic loads. But a model that could explain the aerodynamic forces that can give rise to this motion is still lacking.In this paper we consider the transverse motions of a single sphere in two simplified configurations, (1) hanging (tethered at one point), and (2) swing (tethered at two points) under a longitudinal flow, performing small amplitude swinging oscillations or circular-orbit autorotation about an axis parallel to the main flow direction. The dynamic model here presented is based on the motion equations, which also include a model for the aerodynamic lift and drag forces on the sphere in transverse motion, which considers the effect of changes of flow around the sphere due to the cable interference. These forces are contained in the symmetry plane of the flow relative to the sphere, and, when projected on the lateral direction, give rise to a lateral force, which can explain the existence of the azimuthal motion even at a large reduced velocity, outside the vortex induced vibration (VIV) range The conditions for stable small oscillation motion and circular-orbit autorotation of a sphere in a swing configuration are given.The results for the aerodynamic loads in transverse motion have also been applied to the case of a circular-orbit autorotation of a hanging sphere (spherical pendulum) under a vertical flow. The angular rotation speed and the orbit radius (or cable angle) have been determined as a function of aerodynamic coefficients and configuration parameters.  相似文献   

12.
The results of an investigation of the dynamics of hard particles and liquid drops in the flow behind a transmitted shock wave are presented. From the equation of motion of a particle in the shock wave, relations for the displacement, velocity and acceleration as functions of time and certain velocity-relaxation parameters taking into account the properties of the gas and the aerodynamic drag of the particles are obtained for unsteady flow around the particles at an acceleration of 103–104 m/s2. It is shown that the velocity-relaxation parameters are universal. Approaches to finding the aerodynamic drag of freely-accelerating bodies from the dynamics of their acceleration after being suddenly exposed to the flow are considered. It is established that under these conditions the drop dynamics observed can be well described in terms of the same velocity-relaxation parameters with account for linear growth of the transverse drop size. All the kinematic functions obtained are confirmed experimentally.  相似文献   

13.
The two-dimensional flow around a rotating cylinder is investigated numerically using a vorticity forces formulation with the aim of analyzing quantitatively the flow structures, and their evolutions, that contribute to the lift and drag forces on the cylinder. The Reynolds number considered, based on the cylinder diameter and steady free stream speed, is Re=200, while the non-dimensional rotation rate (ratio of the surface speed and free stream speed) selected was α=1 and 3. For α=1 the wake behind the cylinder for the fully developed flow is oscillatory due to vortex shedding, and so are the lift and drag forces. For α=3 the fully developed flow is steady with constant (high) lift and (low) drag. Each of these cases is considered in two different transient problems, one with angular acceleration of the cylinder and constant speed, and the other one with translating acceleration of the cylinder and constant rotation. We characterize quantitatively the contributions of individual fluid elements (vortices) to aerodynamic forces, explaining and quantifying the mechanisms by which the lift is generated in each case. In particular, for high rotation (when α=3), we explain the relation between the mechanisms of vortex shedding suppression and those by which the lift is enhanced and the drag is almost suppressed when the fully developed flow is reached.  相似文献   

14.
In the present work, a further numerical simulation of the starting flow around a flat plate normal to the direction of motion in a uniform fluid has been made by means of the discrete vortex method. The secondary separation occurring at rear surface of the plate is explored, and predicted approximately using Thwait's method. The calculated results show that in the early stages of the flow secondary separation does occur. The evolution of flow field, the vortex growing process and the characteristics of secondary vortices have been described. The time dependent drag coefficients, the vorticity shed from the edges and rear surface, and the separation positions are calculated as well as the distributions of velocity and pressure on the plate. In the case of flow normal to the plate, the calculated secondary vortices are weak. Their existence will change the local velocity distributions and affect pressure distributions. However, the effect on drag coefficient is negligible.  相似文献   

15.
IntroductionAlongwiththeincreaseoftheflexibilityofslenderstructuresetinthewindfield ,suchasthelong_spanbridgeandhigh_risebuilding ,theactionsofunsteadyaerodynamicforceswillac celerate,andhowtosolvetheaeroelasticproblemsisgettingmoreimportant.Theaeroelas…  相似文献   

16.
The aerodynamic characteristics of models of pairs of bodies on the flow acceleration and deceleration intervals are investigated experimentally at transonic and supersonic flow velocities. The dependence of the drag coefficient of the pair model on the relative drag of the leading body is determined for supersonic velocities.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 152–156, May–June, 1990.  相似文献   

17.
The aerodynamic mechanism of the bat wing membrane Mong the lateral border of its body is studied. The twist-morphing that alters the angle of attack (AOA) along the span-wise direction is observed widely during bat flapping flight. An assumption is made that the linearly distributed AOA is along the span-wise direction. The plate with the aspect ratio of 3 is used to model a bat wing. A three-dimensional (3D) unsteady panel method is used to predict the aerodynamic forces generated by the flapping plate with leading edge separation. It is found that, relative to the rigid wing flapping, twisting motion can increase the averaged lift by as much as 25% and produce thrust instead of drag. Furthermore, the aerodynamic forces (lift/drag) generated by a twisting plate-wing are similar to those of a pitching rigid-wing, meaning that the twisting in bat flight has the same function as the supination/pronation motion in insect flight.  相似文献   

18.
Turbo-machineries, as key components, have wide applications in civil, aerospace, and mechanical engineering. By calculating natural frequencies and dynamical deformations, we have explained the rationality of the series form for the aerodynamic force of the blade under the subsonic flow in our earlier studies. In this paper, the subsonic aerodynamic force obtained numerically is applied to the low pressure compressor blade with a low constant rotating speed. The blade is established as a pre-twist and presetting cantilever plate with a rectangular section under combined excitations, including the centrifugal force and the aerodynamic force. In view of the first-order shear deformation theory and von-Kármán nonlinear geometric relationship, the nonlinear partial differential dynamical equations for the warping cantilever blade are derived by Hamilton's principle. The second-order ordinary differential equations are acquired by the Galerkin approach. With consideration of 1:3 internal resonance and 1/2 sub-harmonic resonance, the averaged equation is derived by the asymptotic perturbation methodology. Bifurcation diagrams, phase portraits, waveforms, and power spectrums are numerically obtained to analyze the effects of the first harmonic of the aerodynamic force on nonlinear dynamical responses of the structure.  相似文献   

19.
鲍欢欢  谷正气  谭鹏 《实验力学》2014,29(4):460-466
汽车尾部湍流场是汽车压差阻力的主要来源,在HD-2汽车模型风洞中,首先使用测力天平和测压系统,对横摆角工况下汽车模型的气动六分力和纵对称截面48个测点的表面压力进行了测量,然后利用PIV测量技术对模型在横摆角分别为0°、15°的尾部湍流场进行了测量,获得该模型尾流场的速度场、涡量场和雷诺应力流场信息,通过计算得出尾流场区域空间相关系数和湍流积分尺度。结果表明:在横摆角工况下,汽车模型尾部涡流的结构呈现向上发展的趋势;尾流场拖拽涡的范围和强度的增大导致了模型气动力出现较大的增加;湍流积分尺度的变化表明,尾部涡流区的分离噪声与涡流分离位置有关,在汽车尾部造型设计中,要尽量推迟尾部涡流的分离。  相似文献   

20.
The problem of nonstationary magnetohydrodynamic flow of a viscous fluid in a half-space resulting from the motion of an infinite plate has received much attention. In [1], for example, solutions are presented for the case of isotropic conductivity, while in [2] a solution of the Rayleigh problem is offered for the case of anisotropic conductivity. In these instances the fluid was assumed incompressible and uniform, and the system of equations was found to be linear. In problems involving nonstationary flow of a gas in a transverse magnetic field resulting from the deceleration of a high-velocity gas flow at the boundary of a half-space or the motion of an infinite plate at supersonic speed relative to a stationary gas it becomes necessary to take into account the compressibility of the gas and the temperature dependence of the conductivity. It is then possible to have flows in which the gas becomes electrically conducting and begins to interact with the magnetic field solely as a result of the increase in temperature due to viscous dissipation of energy. The magnetic field, interacting with the conducting gas, exerts an effect on the drag and heat transfer to the surface of the plate. At sufficiently low gas pressures and strong magnetic fields a Hall effect may be observed. The system of equations describing the motion of a compressible gas with variable conductivity is essentially nonlinear. The present article is devoted to a study of such motions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号