首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The time-periodic motions of a liquid layer of finite depth beneath an ice sheet with a straight infinite crack having a periodic dependence on the horizontal coordinate in the direction of the crack are considered. The ice sheet is simulated by a thin elastic plate. It is assumed that the thickness of the plate changes abruptly across the crack. The problems of plane-wave diffraction at a crack, plane-wave diffraction atN cracks in a uniform ice sheet, and plane-wave reflection from a rigid wall are solved. The effect of the pre-existing state of stress of the ice sheet on the properties of the reflected waves is investigated. The condition of nontransmission of fix-frequency waves beneath the edge of the ice is obtained.Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No.2, pp. 93–102, March–April, 1993.  相似文献   

2.
The development of three-dimensional waves generated by a region of pressures moving uniformly and rectilinearly over the surface of a thin elastic isotropic plate covering an ideal fluid layer of finite depth is investigated. The pressures act starting at a certain instant. A qualitative similarity between the waves occurring and gravity-capillary waves is noted. The calculations are made for an ice cover. This model problem permits examining a number of properties of the oscillations of the ice cover occurring when hauling freight over ice roads, landing and takeoff of aircraft from ice fields, etc. [1]. The development of ship waves in a fluid of finite depth in the absence of a floating plate was investigated in [2, 3] and gravity-capillary waves were studied in [4–6]. Certain properties of steady three-dimensional waves occurring during movement of a load over the surface of a floating elastic plate were established in [1].Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 26–32, September–October, 1978.  相似文献   

3.
The influence of a thin elastic isotropic plate on the wave motion of an inhomogeneous fluid originating under the effect of external periodic perturbations is investigated. The fluid density increases constantly with depth. Analogous problems have been examined for an inhomogeneous fluid without a plate in [1, 2] and with a plate on the surface of a homogeneous fluid in [3–5].Sevastopol'. Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 60–67, January–February, 1972.  相似文献   

4.
The impingement of small-amplitude surface waves on the edge of a solid compressed ice sheet in a basin of finite constant depth is considered. The influence of the cylindrical rigidity and the value of the compressing force on the dependence of the amplitude coefficients of reflection and transmission on the incident wave period is analyzed.Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 3, pp. 121–126, May–June, 1995.  相似文献   

5.
A study is made in the linear formulation of the influence of a uniformly compressed floating elastic plate on the unsteady three-dimensional wave motion of a homogeneous fluid of finite depth. Waves are excited by a region of normal stresses which moves on the surface of the plate. Three-dimensional flexural-gravity waves were studied in [1, 2] without allowance for compressing forces. Plane waves under conditions of longitudinal compression were considered in [3, 4].Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 78–83, November–December, 1984.  相似文献   

6.
Unsteady rectilinear motion of an air-cushion vehicle over an ice sheet at various speeds is considered. Ice is modeled by a viscoelastic ice plate. The effects of the basin depth, the thickness and relaxation time of ice, vehicle length, acceleration, deceleration, and speed of uniform motion on the wave resistance of the vehicle are analyzed. Maneuvering methods for increasing or lowering the wave resistance of the vehicle are proposed. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 49, No. 1, pp. 89–99, January–February, 2008.  相似文献   

7.
The problem of vibrations of an ice sheet with a rectilinear crack on the surface of an ideal incompressible fluid of finite depth under the action of a time-periodic local load is solved analytically using the Wiener–Hopf technique. Ice cover is simulated by two thin elastic semi-infinite plates of constant thickness. The thickness of the plates may be different on the opposite sides of the crack. Various boundary conditions on the edges of the plates are considered. For the case of contact of plates of the same thickness, a solution in explicit form is obtained. The asymptotics of the deflection of the plates in the far field is studied. It is shown that in the case of contact of two plates of different thickness, predominant directions of wave propagation at an angle to the crack can be identified in the far field. In the case of contact of plates of the same thickness with free edges and with free overlap, an edge waveguide mode propagating along the crack is excited. It is shown that the edge mode propagates with maximum amplitude if the vertical wall is in contact with the plate. Examples of calculations are given.  相似文献   

8.
The present study is concerned with an analysis of gravitational and acoustic waves which are excited by a vibrational source deeply placed in a liquid covered by ice. An analysis of the rigidity characteristics of ice modeled by an elastic layer or by a Kirchhoff plate is done by factorization of the solution to the integral equation equivalent to an initially combined boundary value problem. The uncombined boundary condition is used to solve problems for unrestricted ice fields in [1–3], whereas combined conditions with vibrational sources positioned at the boundary of the medium are used in [4].Translated from Zhurnal Prikladnoi Mekhaniki, No. 3, pp. 125–129, May–June, 1986.  相似文献   

9.
Hyuck Chung  Colin Fox 《Wave Motion》2009,46(7):468-479
Ocean waves travel deep into ice fields in the polar regions, both affecting the formation of sea-ice and causing its break-up. Recently, it has been shown that a relatively simple linear water and bending wave theory can predict the decay rate of the wave energy travelling through fractured ice sheets and floes at the geophysically important wave periods of 6–15 s. That work used simple free-edge conditions. A possible improvement to the current model is to better represent the effective connection due to partially frozen cracks that occur in practice. The Wiener–Hopf technique gives explicit formulae for the velocity potential and surface deflection, expressed as series expansions over the modes of the elastic plate floating on water of finite depth, with the coefficients in the expansion given as functions of four constants. These constants are determined by a system of four linear equations, represented by a 4-by-4 matrix and a four-element vector. The elements of the matrix are given as explicit functions of relationship between edge conditions. General connections between ice sheets may be interpreted as a vertical and a rotational spring providing transition conditions for the shear force and the bending moment. The reflection and the transmission of waves can then be simply calculated as direct functions of the connection conditions. Conversely, reflected and transmitted waves allow complete characterization of the effective connection conditions at a material discontinuity.  相似文献   

10.
巴迪M.M.  卢东强 《力学学报》2018,50(6):1406-1417
通过奇异摄动方法研究了在薄冰层覆盖的不可压缩理想流体表面上传播的两个水弹性孤立波之间的迎面碰撞.借助特殊的 Cosserat 超弹性壳 理论以及Kirchhoff--Love 板理论,冰层由 Plotnikov--Toland板模型描述.流体运动采用浅水假设和Boussinesq 近似. 应用Poincaré--Lighthill--Kuo 方法进行坐标变形,进而渐近求解控制方程及边界条件, 给出了三阶解的显式表达. 可以观察到碰撞后的孤立波不会改变它们的形状和振幅. 波浪轮廓在碰撞之前是对称的, 而在碰撞之后变成不对称的并且在波传播方向上向后倾斜. 弹性板和流体表面张力减小了波幅. 图示比 较了本文与已有结果可知线性板模型可作为本文的一个特例.   相似文献   

11.
This article examines the motion of a crack along the line joining two different elastic half-planes under the influence of variable shear stresses. Analogous to the case of a homogeneous medium [1–3], the law of motion of the edge is assumed to be known. Among the features of the physical situation being examined are the nonsymmetrical character of the solution with a symmetrical load distribution and the dependence of the number of Rayleigh wave which can be generated (two, one, none) on the ratios of the elastic parameters. The problem decomposes in the image space into a scalar problem of conjugating two functions reflecting the connection between the displacement discontinuity on the crack and the shear stress on the crack extension. The formula must then be inverted to represent the normal stress. The solution is constructed by the method of factorization, which was used in [2, 3] for a problem with a movable separation point for the boundary conditions. The properties of the Rayleigh boundary function for contacting elastic bodies are also studied. It is shown that the Holder continuity condition for the input functions is sufficient to determine the asymptotes at the edge of the crack, analogous to the case of steady crack movement [4]. With transformations of the convolutions, we used the methods of contour integration and applied the residue theorem. This made it possible to somewhat simplify the results [2]. The subject of crack starting is addressed in an examination of special types of loading. The solution of a similarity problem was given in [5].Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 6, pp. 129–138, November–December, 1986.  相似文献   

12.
The analytic solution of the problem of vibrations of an ice sheet with a rectilinear crack floating on the surface of an ideal incompressible fluid of shallow depth under the action of a local zone of the time-periodic pressure is obtained. The ice sheet is simulated by two thin viscoelastic semiinfinite plates of different thickness. Various conditions on the crack edges are considered. Far field asymptotics are investigated and it is revealed that the predominant directions of wave propagation at an angle to the crack can be distinguished in the far field in the case of contact of two plates of different thickness. In the case of contact of identical plates, a waveguide mode propagating along the crack is excited. It is shown that the waveguide mode is the same for the plates with the free edges and the free overlap since the part of the solution symmetric about the crack is the same while the difference between the solutions is caused by the antisymmetric part of the solution.  相似文献   

13.
The Wiener-Hopf technique is used to obtain an analytical solution for the problem of vibrations of a floating semi-infinite elastic plate due to earthquake-induced vibrations of a bottom segment. An explicit solution is obtained ignoring the inertial term. The surface-wave amplitudes and ice-plate deflection are studied numerically as functions of the frequency and position of the vibrating bottom segment, ice thickness, and fluid depth.Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 46, No. 2, pp. 98–108, March–April, 2005.  相似文献   

14.
An approach to the solution of unsteady problems with mixed boundary conditions for a layer of heavy fluid is developed. The plane problem of wave excitation by displacements given in a certain region of the lower boundary of the layer when the upper boundary is partially covered by an elastic plate is examined by way of illustration. As distinct from [1, 2], the proposed approach makes it possible to construct a solution in the form of a sum of harmonics and to carry out an analytic investigation into the nature of the propagation and stabilization of the wave fields. The space-time regions of the forming and formed wave packets are identified.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 100–106, November–December, 1985.  相似文献   

15.
Operational ocean wave models need to work globally, yet current ocean wave models can only treat ice covered regions crudely. The purpose of this paper is to provide a brief overview of ice effects on wave propagation and different research methodology used in studying these effects. Based on its proximity to land or sea, sea ice can be classified as: landfast ice zone, shear zone, and the marginal ice zone. All ice covers attenuate wave energy. Only long swells can penetrate deep into an ice cover. Being closest to open water, wave propagation in the marginal ice zone is the most complex to model. The physical appearance of sea ice in the marginal ice zone varies. Grease ice, pancake ice,brash ice, floe aggregates, and continuous ice sheet may be found in this zone at different times and locations. These types of ice are formed under different thermal-mechanical forcing. There are three classic models that describe wave propagation through an idealized ice cover: mass loading,thin elastic plate, and viscous layer models. From physical arguments we may conjecture that mass loading model is suitable for disjoint aggregates of ice floes much smaller than the wavelength, thin elastic plate model is suitable for a continuous ice sheet, and the viscous layer model is suitable for grease ice. For different sea ice types we may need different wave ice interaction models. A recently proposed viscoelastic model is able to synthesize all three classic models into one. Under suitable limiting conditions it converges to the three previous models. The complete theoretical framework for evaluating wave propagation through various ice covers need to be implemented in the operational ocean wave models. In this review, we introduce the sea ice types, previous wave ice interaction models, wave attenuation mechanisms,the methods to calculate wave reflection and transmission between different ice covers, and the effect of ice floe breaking on shaping the sea ice morphology. Laboratory experiments,field measurements and numerical simulations supporting the fundamental research in wave-ice interaction models are discussed. We conclude with some outlook of future research needs in this field.  相似文献   

16.
In a linear formulation, a study is made of the influence of a longitudinally compressed elastic isotropic plate on the nonstationary wave motion of a stream of homogeneous liquid of finite depth on which the plate floats. The waves are generated by periodic (in time) normal stresses applied to a restricted region of the plate surface and beginning at a certain initial time.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 68–75, September–October, 1980.  相似文献   

17.
I. David Abrahams   《Wave Motion》2002,36(4):311-333
Many problems in linear elastodynamics, or dynamic fracture mechanics, can be reduced to Wiener–Hopf functional equations defined in a strip in a complex transform plane. Apart from a few special cases, the inherent coupling between shear and compressional body motions gives rise to coupled systems of equations, and so the resulting Wiener–Hopf kernels are of matrix form. The key step in the solution of a Wiener–Hopf equation, which is to decompose the kernel into a product of two factors with particular analyticity properties, can be accomplished explicitly for scalar kernels. However, apart from special matrices which yield commutative factorizations, no procedure has yet been devised to factorize exactly general matrix kernels.

This paper shall demonstrate, by way of example, that the Wiener–Hopf approximant matrix (WHAM) procedure for obtaining approximate factors of matrix kernels (recently introduced by the author in [SIAM J. Appl. Math. 57 (2) (1997) 541]) is applicable to the class of matrix kernels found in elasticity, and in particular to problems in QNDE. First, as a motivating example, the kernel arising in the model of diffraction of skew incident elastic waves on a semi-infinite crack in an isotropic elastic space is studied. This was first examined in a seminal work by Achenbach and Gautesen [J. Acoust. Soc. Am. 61 (2) (1977) 413] and here three methods are offered for deriving distinct non-commutative factorizations of the kernel. Second, the WHAM method is employed to factorize the matrix kernel arising in the problem of radiation into an elastic half-space with mixed boundary conditions on its face. Third, brief mention is made of kernel factorization related to the problems of flexural wave diffraction by a crack in a thin (Mindlin) plate, and body wave scattering by an interfacial crack.  相似文献   


18.
The steady motion of amphibian aircushion vehicles over water covered with continuous ice is studied. The ice sheet is simulated by a viscoelastic ice plate. An analysis is made of the effect of the aspect ratio of the vehicle, the depth of the water reservoir, and ice characteristics on the wave resistance of the vehicle and the speed of the vehicle at which the wave resistance is maximal.  相似文献   

19.
The properties of the natural vibrations of a hummock ridge in an elastic ice sheet are investigated. Typical shapes of the dispersion curves for symmetric and antisymmetric boundary waves which propagate along the hummock and damp exponentially with distance from the latter are obtained. It is shown that natural vibrations can initiate failure of the ice sheet at a certain distance from the hummock. Under compression this process leads to the formation of a parallel hummock ridge.Moscow. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 6, pp. 99–105, November–December, 1995.  相似文献   

20.
The effect of a thin elastic floating plate on the three-dimensional internal waves in the near zone of a moving region of constant pressure is studied with reference to a two-layer model of a liquid of finite depth. The dependence of the spatial distributions of the amplitudes of the wave disturbances due to the internal waves at the plateliquid interface and on the surface of density discontinuity on the rate of displacement of the pressure region and the characteristics of the plate is analyzed.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 85–91, January–February, 1990.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号