首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Capillary electrophoresis (CE) using sulfobetaine-type zwitterionic micelles as the background electrolyte (BGE) has been used to determine inorganic anions in human saliva. The zwitterionic micelles resulted in unique migration behavior for the separation of inorganic anions. They also prevented adsorption of proteins on the inner wall of the capillary. These properties of the zwitterionic micelles enabled the direct determination of inorganic anions in human saliva. Three species of inorganic anions, NO2 , NO3 , and SCN, were found in real samples and the analysis was achieved within 3 min. Direct UV-absorption was used as the detection method and the detection limits for these anions were 2.0, 1.0, and 5.0 μmol L–1, respectively (0.09, 0.06, and 0.30 μg mL–1).  相似文献   

2.
Hu W  Tanaka K  Hasebe K 《The Analyst》2000,125(3):447-451
A new ion chromatographic (IC) system, which uses zwitterionic (e.g., Zwittergent 3-14) micelles as both stationary and mobile phases, highly useful for the analysis of inorganic anions in biological samples, was developed. The zwitterionic micellar stationary phase (which is obtained by immobilizing the zwitterionic surfactant on surfaces of the reversed-phase ODS) showed high ability to confine the elution bands of the large amount of SO4(2-) and Cl- to narrow zones. As a result, a base-line separation of NO2-, Br- and NO3- from SO4(2-) and Cl- is always achieved. The zwitterionic micellar mobile phase, (which is obtained by dissolving the zwitterionic surfactant with a suppressive electrolytic solution, e.g., aqueous NaHCO3 solution), on the other hand, showed high ability for rapid elution of proteins. The separation column is therefore always being cleaned up even after the protein-containing sample is directly injected. The zwitterionic micelles are also insensitive to conductivity detection, therefore either the suppressed or the non-suppressed conductivity detection method is applicable for detection of the analyte ions. Urine and serum were chosen as the model real samples and were analysed with direct sample injection; the results of successful determination of a number of inorganic anions (SO4(2-), Cl-, NO2-, Br- and NO3-) in both samples have demonstrated the usefulness of this new IC system.  相似文献   

3.
An octadecylsilica (ODS) column modified with zwitterionic/nonionic mixed surfactants was evaluated for the direct injection determination of inorganic anions in biological fluids by ion chromatography. A zwitterionic surfactant (sulfobetaine-type) and a nonionic surfactant (polyoxyethylene-type) were used for a stationary-phase modification. When aqueous electrolyte solutions with concentrations of sub-mM to several mM were used as a mobile phase, the zwitterionic surfactant coated on the ODS surface exhibited unique separation selectivity for ionic species, while the nonionic surfactant coated on the ODS might have formed a hydrophilic network over the ODS surface and restricted matrix proteins from adsorbing on the stationary phase. Consequently, the mixed surfactant-modified column system allowed an efficient ion chromatographic separation of inorganic anions as well as a size-exclusive removal of column-fouling proteins. This separation system was applied to the direct injection determination of UV-absorbing anions in human saliva. The detection limits for nitrite, nitrate, iodide and thiocyanate were 3.1, 2.7, 4.5 and 25 microM, respectively, with UV detection at 210 nm (injection volume; 20 microl), and their relative standard deviations for 5 replicate measurements of saliva samples spiked with 100 microM each of those anions were 1.4, 0.9, 2.2 and 5.5%, respectively.  相似文献   

4.
The problem of column performance degradation due to irreversible binding of proteins encountered in ion chromatographic (IC) analysis of ions in protein-containing samples was overcome by using zwitterionic micelles (e.g., Zwittergent-3-14) as a portion of the eluent. A zwitterionic micellar eluent showed high ability for solubilization of proteins, and, hence, the protein-containing samples could be analyzed without need for deproteinization. On the other hand, the zwitterionic micelle was insensitive to conductivity but interacted with the analyte ions, due mainly to its unique configuration of charges (namely, the zwitterionic micelle containing both positively and negatively charged groups but carrying no net charge). Using a zwitterionic micellar eluent, the analyte ions could be detected selectively and sensitively, and moreover, the selectivity for the analyte ions was unique. A conventional anion-exchange column conditioned with a Zwittergent-3-14 micellar eluent was applied for the analysis of real biological samples (serum and urine) with direct sample injection. The results of the successful detection of inorganic anions (Cl-, SO4(2-), NO2-, Br-, and NO3-) have demonstrated the usefulness of this new IC approach for the analysis of biological samples.  相似文献   

5.
Tetraborate is investigated as the eluent ion for suppressed electrostatic ion chromatography (EIC) using a zwitterionic stationary phase. Good separation of a range of inorganic anions (SO4(2-), Cl-, NO3-, Br-, NO3-, ClO3-, and I-) was obtained, with detection limits for highly conducting ions (SO4(2-), Cl-, NO2-, Br- , and NO3-) being less than 8 x 10(-8) M, and for weakly conducting anions (ClO3- and I-) being 2.7 x 10(-7) and 5.8 x 10(-7) M, respectively. Calibration curves were linear up to 1.8 mM of each analyte. Retention times were found to increase with increasing eluent concentration and a linear relationship was observed between log k' and log[Na2B4O7] for all analytes. This behaviour is attributed to the progressive formation of a binary electrical double layer at the surface of the zwitterionic stationary phase. Retention times of analytes could be manipulated by varying the concentration of the eluent. This new suppressed-EIC system was applied to the determination of inorganic anions (SO4(-2) , CI-, NO3-, NO2-, and Br-) in snow and rainwater samples.  相似文献   

6.
In this paper, the use of an ion-pairing reagent to improve the separation selectivity of inorganic anions in CZE was demonstrated by the addition of tetramethylammonium hydroxide (TMAOH) to the electrolyte. The separation of inorganic anions (Cl(-), I(-), Br(-), NO(2)(-), NO(3)(-) and SCN(-)) was performed using co-electroosmotic flow (EOF) with direct UV detection at 185 nm. The parameters affecting the mobility of the tested anions and the EOF such as the electrolyte pH and concentration of TMAOH in the electrolyte were examined to optimise the separation conditions. In addition, sample-stacking techniques were investigated to improve detection sensitivity. Detection sensitivities were improved 5-13-fold using electrokinetic sample stacking. The detection limits ranged from 1-3 micro mol L(-1). Finally, the proposed method was used for the separation of anions in groundwaters.  相似文献   

7.
Y Michigami  K Fujii  K Ueda  Y Yamamoto 《The Analyst》1992,117(12):1855-1858
A simple ion-chromatographic method has been developed for the determination of trace amounts of thiocyanate in human saliva and urine. Thiocyanate separation and detection were carried out on an ODS column coated with cetyldimethylamine and by an ultraviolet detector, respectively. Citrate solution (1 mmol l-1) was used as the mobile phase. Thiocyanate was clearly separated from many organic and inorganic anions found in saliva and urine samples. The analytical results obtained by the proposed method agreed with those of the Fe(3+)-thiocyanate spectrophotometric method. Thiocyanate concentrations in the saliva and urine of smokers were found to be significantly higher than those of non-smokers.  相似文献   

8.
Ion-exclusion/cation-exchange chromatography with an eluent containing the bile salt-type zwitterionic surfactant CHAPS was performed in order to evaluate variations in anion (SO(4)(2-), NO(3)(-), and SCN(-)) and cation (Na(+), K(+), NH(4)(+), Mg(2+), and Ca(2+)) concentrations in human saliva. CHAPS prevents the adsorption of proteins to the stationary phase, i.e., weakly acidic cation-exchange resin, since it aggregates proteins without denaturing them. Addition of 1mM CHAPS to the eluent comprising 6mM tartaric acid and 7 mM 18-crown-6 yielded reproducible separations of anions and cations in protein-containing saliva. The resolutions of anions and cations were not significantly affected by the addition of CHAPS to the eluent. The concentrations of Na(+) and K(+) varied before and after meals; or that of SCN(-), upon smoking. The relative standard deviations of peak areas ranged from 0.3 to 5.1% in 1 day (n=20) and from 1.4 to 5.8% over 6 days (n=6).  相似文献   

9.
用流动相离子色谱法(MPIC),以两性化合物与离子对试剂的混合溶液为流动相,在C18柱上抑制电导检测分析气溶胶中常规无机阴离子和有机酸。实验采用氢氧化四丁基铵(TBAOH)为离子对试剂,与两性化合物3-(N-吗啉)-1-丙磺酸(MOPS)混合,加入Na2CO3无机添加剂作流动相,其浓度为1mmol/L TBAOH/5mmol/LMOPS/0.5mmol/LNa2CO3。分离柱采用硅质C18柱,抑制电导检测。可以较好地分离和检测常见的无机和有机阴离子。该方法具有较好的重现性和线性关系,F^-、Cl^-、NO2^-、Br^-、C3H3O3^-、NO3^-的回收率分别为102.0%、104.6%、102.4%、97.8%、97.75%和102.5%;检出限分别为0.017、0.014、0.0048、0.036、0.16和0.017mg/L。  相似文献   

10.
Ion chromatography is the most popular instrumental analytical method used for the determination of anions and cations in water and wastewater. Isocratic ion chromatography with suppressed conductivity detection is frequently used in laboratories carrying out routine analyses of inorganic anions. The paper presents the results of the research into the influence of selected inorganic anions dominant in environmental samples (Cl(-), NO(3)(-), SO(4)(2-)) on the possibility of simultaneous determination of F(-), Cl(-), NO(2)(-), NO(3)(-), PO(4)(3-) and SO(4)(2-) with the application of this most popular ion chromatography type in standard separation conditions. Four Dionex and four Metrohm anion-exchange columns were tested in standard separation conditions recommended by their manufacturers with both standard solutions and environmental samples with complex matrix.  相似文献   

11.
Separations of common inorganic anions were carried out on ODS columns coated with two long-chain alkylimidazolium ionic liquids ([C(12)MIm]Br and [C(14)MIm]Br) as new cationic surfactants for ion chromatography. With phthalate buffer solution as the mobile phases and non-suppressed conductivity detection, high column efficiencies and excellent selectivity were obtained in the separation of inorganic anions. Chromatographic parameters are calculated and the results show that the coated column possesses significant potential for the analysis of some inorganic anions such as CH(3)COO(-), IO(3)(-), Cl(-), BrO(3)(-), NO(2)(-), Br(-), NO(3)(-), SO(4)(2-), I(-), BF(4)(-), and SCN(-). The effect of eluent pH values on the separation of anions has been studied on the column coated with [C(12)MIm]Br. The stability of the coated columns was also examined.  相似文献   

12.
This paper describes an electrostatic ion chromatographic system in which the separation selectivity for inorganic anions, especially for sulfate and phosphate, could be manipulated by altering the molar ratio of the zwitterionic and cationic surfactants in the column coating solution used to prepare the stationary phase. The zwitterionic surfactant used for this study was 3-(N,N-dimethyltetradecylammonio)propanesulfonate (Zwittergent-3-14) and the cationic surfactant was tetradecyltrimethylammonium (TTA). Using a reversed-phase C18 column (250×4.6 mm I.D.) coated with 10/10 (mM/mM) of TTA/Zwittergent-3-14 mixed micelles as the stationary phase and either NaHCO3 or Na2CO3 aqueous solution as the eluent, together with suppressed conductivity detection, baseline separation of seven model inorganic anions was obtained. The elution order for those anions was found to be F42−42−23. Under the same conditions but using 1/10 (mM/mM) of TTA/Zwittergent-3-14 mixed micelles as the column coating solution, the elution order for these model ions was F42−42−23. The early elution of phosphate and sulfate is a unique attribute of this system. Detection limits for F, HPO42−, Cl, SO42−, NO2, Br and NO3 (S/N=3, sample injection volume 100 μl) were 0.11, 0.12, 0.12, 0.18, 0.49, 0.49, 0.52 μM, respectively.  相似文献   

13.
A carboxybetaine-type zwitterionic stationary phase obtained by immobilizing Mitsubishi Reagent EF-700 (C(8)F(17)SO(2)NHC(3)H(6)N(+) (CH(3))(2)-C(2)H(4)-COO(-)) onto a reversed-phase column was used for chromatographic separation of ions. When aqueous electrolyte solutions having higher pH values (>8) were used as eluents, the model analyte ions (NO(2)(-), H(2)PO(4)(-), Cl(-), Br(-), NO(3)(-), ClO(3)(-), I(-) and SCN(-)) were co-eluted and appeared at the void volume of this HPLC system. However, when aqueous electrolyte solutions having lower pH values (<5.5) were used as eluents, these anions were well retained and separated. Furthermore, when acetate buffers (NaAc/HAc) were used as eluents, plots of log k' (k', retention factor) versus pH of eluents (at constant [NaAc+HAc]), and log k' versus log [NaAc+HAc] (at constant pH), were linear with negative slopes. Breakthrough curves for acid solutions obtained using conductivity detection showed that H(+) ions and their conjugate anions were both retained on the stationary phase and the degree of binding was found to be independent of the acid species used. The degree to which the eluent cation was bound onto the carboxylate functionality of the zwitterion was found to exert a major effect on the retention of analyte anions. A strongly bound cation, such as H(+), reduced electrostatic repulsion effects exerted by the carboxylate functionality on analyte anions, so that they could freely access the quaternary ammonium sites on the zwitterion. It is concluded based on these experimental results that both the charges on the zwitterionic stationary phase make meaningful contributions to the separation of the analyte ions.  相似文献   

14.
The simultaneous determination of inorganic anions by ion chromatography using a dynamically coated graphitized carbon column with cetyltrimethylammonium (CTA) ions was investigated with suppressed conductivity detection. Column preparations with CTA and sodium carbonate-sodium hydrogencarbonate concentration in the eluent were examined to optimize the separation of seven common anions (F-, Cl-, NO2-, Br-, NO3-, HPO(4)2- and SO(4)2-). Calibration curves were linear from 0.5 to 5 micrograms/ml for F-, from 1.0 to 10 micrograms/ml for Cl-, from 1.5 to 15 micrograms/ml for NO2-, from 2.0 to 20 micrograms/ml for Br- and NO3-, from 5.0 to 50 micrograms/ml for HPO(4)2- and from 3.0 to 30 micrograms/ml for SO(4)2- with correlation coefficients (r) of 0.999 or better. The relative standard deviations of peak areas were between 0.3 and 0.9% for 10 repeated measurements. The application of this newly developed method was demonstrated by the determination of inorganic anions in the water for pharmaceutical purposes. Using CTA-Br as the coating agent, a permanently coated ion-exchange column was obtained, which allowed efficient separations of seven anions without adding any coating agent to the eluent.  相似文献   

15.
The capability of the suppressed conductometric detection ion chromatography (IC) was investigated for the separation and determination of inorganic anions (F-, Cl-, NO3- and SO4(2-)) in standard reference materials SRM-1648 urban particulate matter following ultrasonic extraction. The effects of the cationic surfactant (SDS) and the anionic surfactant (CTAB) on ultrasonic extraction efficiency of inorganic anions from complex matrix of airborne particulate matter were investigated. The results showed that surfactant can enhance the extraction efficiency. Finally, the concentrations of inorganic anions in the atmosphere of the city of Isfahan were determined. The results showed a trend of SO4(2-) > NO3- > Cl- > F-.  相似文献   

16.
Evaporative light-scattering detection (ELSD) was investigated for the direct determination of alkali and alkaline-earth cations by cation-exchange chromatography. Successful single run analysis of Na+, K+, Mg2+ and Ca2+ was achieved in 11 min on the Hamilton PRP-X200 column using an aqueous solution of ammonium formate as mobile phase under a salt concentration step gradient mode (20 mM and 100 mM). Surprisingly the use of ELSD reveals a weak retention of inorganic anions (Cl-, NO3-, SO4(2-)) onto the polymeric cation exchanger, which enables the simultaneous determination of inorganic anions (C1- and NO3-) associated with the cations analysed (Na+ and K+).  相似文献   

17.
Kozaki D  Shi CH  Tanaka K  Nakatani N 《色谱》2012,30(4):361-364
To enhance the conductivity detection sensitivity of common anions(Na-anions) in electrostatic ion chromatography(EIC) by elution with water,a conductivity enhancement column packed with strong acid cation exchange resin in the H-form was inserted between an octadecyl silane(ODS)-silica separation column modified with zwitterionic surfactant(CHAPS: 3-{(3-cholamidopropyl)-dimethylammonio}propanesulfonate) and a conductivity detector.Specifically,the Na-anion pairing is converted to H-anion pairing after the EIC separation and then detected sensitively by the conductivity detector.The effects of conductivity enhancement and suppression in the EIC by the enhanced conductivity detection were characterized for the common strong acid anions such as SO2-4,Cl-,NO-3,I-and ClO-4 and weak acid anions such as F-,NO-2,HCOO-,CH3COO-and HCO-3.For the conductivity enhancement effect in the EIC,it is found that the conductivity of measured for all strong acid anions(Na-anions) was enhanced according to the theoretical conductivity predicted for H-anions and that of the measured for weak acid anions was suppressed depending on their pKa of H-anions.For the calibration linearity in the EIC,the strong acid anions were linear(r2=0.99-1.00) because the degree of dissociation is almost 1.0 over all the concentration range and that of the weak acid anions was non-linear because the degree of dissociation decreased by increasing the concentration of the weak acid anions.In conclusion,the EIC by enhanced conductivity detection was recognized to be useful only for the strong acid anions in terms of conductivity detection and calibration linearity.  相似文献   

18.
An ion-chromatographic (IC) system with high selectivity for separation of nitrite is described. It is analogous to the EIC (electrostatic IC) previously reported and was established using 3-(N,N-dimethylstearylammonio)propanesulfonate (C23H49NO3S, a sulfobetaine type of zwitterionic surfactants) as the stationary phase and dilute aqueous HCl solutions as the mobile phase. Five inorganic anions, sulfate, chloride, bromide, nitrate, and nitrite were chosen as the model analytes and were analyzed using this EIC system. Sulfate was always eluted first, followed by chloride, bromide and nitrate. Nitrite, however, could be eluted either before or after nitrate, depending on the concentration of HCl in the eluent. An elution order nitrate< nitrite was always obtained simply by using >3 mmol L(-1) HCl as the eluent. For nitrite the detection limit was better than 2.1 x 10(-7) mol L(-1) (100 microL sample injection volume, S/N=3, UV at 210 nm). Bromide and nitrate could also be separated under these HPLC conditions. The detection limit for bromide was 7.2 x 10(-8) mol L(-1) and for nitrate 6.5 x 10(-8) mol L(-1). Both nitrite and nitrate in real seawater samples were successfully determined with direct sample injection using this EIC system.  相似文献   

19.
The problem of column performance degradation due to irreversible binding of proteins encountered in ion chromatographic (IC) analysis of ions in protein-containing samples was overcome by using zwitterionic micelles (e.g., Zwittergent-3–14) as a portion of the eluent. A zwitterionic micellar eluent showed high ability for solubilization of proteins, and, hence, the protein-containing samples could be analyzed without need for deproteinization. On the other hand, the zwitterionic micelle was insensitive to conductivity but interacted with the analyte ions, due mainly to its unique configuration of charges (namely, the zwitterionic micelle containing both positively and negatively charged groups but carrying no net charge). Using a zwitterionic micellar eluent, the analyte ions could be detected selectively and sensitively, and moreover, the selectivity for the analyte ions was unique. A conventional anion-exchange column conditioned with a Zwittergent-3-14 micellar eluent was applied for the analysis of real biological samples (serum and urine) with direct sample injection. The results of the successful detection of inorganic anions (Cl, SO4 2–, NO2 , Br, and NO3 ) have demonstrated the usefulness of this new IC approach for the analysis of biological samples.  相似文献   

20.
Mo H  Zhu L  Xu W 《Journal of separation science》2008,31(13):2470-2475
Separation of inorganic anions in CE is often a challenging task because the electrophoretic mobilities of inorganic anions are comparable to or even greater than the EOF mobility. In this study, we present the use of ionic liquids (ILs) as background electrolytes (BGEs) in CE of inorganic anions. The 1-alkyl-3-methylimidazolium-based ILs as BGEs dynamically coated the capillary wall and induced a reversed EOF. This allowed the anions to comigrate with the EOF and yielded a rapid separation. Increasing the alkyl chain length of the ILs and BGE concentration can significantly improve the separation resolution. With 40 mM 1-butyl-3-methylimidazolium tetrafluoroborate as BGE, good separations of five model anions (Br-, I-, NO2(-), NO3(-), and SCN-) were achieved in a range of buffer pH values. The separation efficiency was as high as 34 600-155 000, and the RSDs of the migration times were less than 0.8% (n = 5).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号