首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The density and osmotic coefficient data for solutions of 15-crown-5 (15C5) in water and in CCl4 solvent systems at 298.15 K have been reported using techniques of densitometry and vapor pressure osmometry in the concentration range of 0.01-2 mol kg-1. The data are used to obtain apparent molar and partial molar volumes, activity coefficients of the components as a function of 15C5 concentration. Using the literature heat of dilution data for aqueous system, it has become possible to calculate entropy of mixing (DeltaS(mix)), excess entropy of solution (DeltaS(E)), and partial molar entropies of the components at different concentrations. The results of all these are compared to those obtained for aqueous 18-crown-6 solutions reported earlier. It has been observed that the partial molar volume of 15C5 goes through a minimum and that of water goes through a maximum at approximately 1.2 mol kg(-1) in aqueous solutions whereas the opposite is true in CCl4 medium but at approximately 0.5 mol kg(-1). The osmotic and activity coefficients of 15C5 and excess free energy change for solution exhibit distinct differences in the two solvent systems studied. These results have been explained in terms of hydrophobic hydration and interactions in aqueous solution while weak solvophobic association of 15C5 molecules in CCl4 solutions is proposed. The data are further subjected to analysis by applying McMillan-Mayer and Kirkwood-Buff theories of solutions. The analysis shows that osmotic second virial coefficient value for 15C5 is marginally less than that of 18C6 indicating that reduction in ring flexibility does not affect the energetics of the interactions much in aqueous solution while the same gets influenced much in nonpolar solvent CCl4.  相似文献   

2.
The thermodynamic characteristics of aqueous solutions of N-methylformamide were calculated over the whole range of mixture compositions. Intermolecular interaction parameters were determined, and the boundaries of concentration regions with different types of intercomponent association and solution structural organization were established.  相似文献   

3.
The thermodynamic characteristics of aqueous solutions of mono-, di-, tri-, and tetraethylene glycols were calculated in the entire range of compositions of the mixtures for various temperatures. The specific and nonspecific terms of the total energy of intermolecular interaction were determined within the framework of a model approach using the internal pressure as a measure of nonspecific interactions in a liquid. The concentration ranges with different types of intercomponent association and of structural organization of solutions depend on the temperature and number of ether groups in the glycol molecules.  相似文献   

4.
A new approach for analysis of NMR parameters is proposed. The experimental data set includes scalar couplings, NOEs, and residual dipolar couplings. The method, which aims at construction of the conformational distribution function, is applied to alpha-cyclodextrin in isotropic solution and dissolved in a dilute liquid crystal. An attempt to analyze the experimental data using an average molecular conformation resulted in unacceptable errors. Our approach rests on the maximum entropy method (ME), which gives the flattest possible distribution, consistent with the experimental data. Very good agreement between experimental and calculated NMR parameters was observed. In fact, two conformational states were required in order to obtain a satisfactory agreement between calculated and experimental data. In addition, good agreement with Langevin dynamics computer simulations was obtained.  相似文献   

5.
Coarse-grained, implicit solvent molecular simulations have been conducted to investigate the structure and interactions of L64 Pluronic micelles in aqueous solutions. Simulations of an L64 solution beginning with monodisperse micelles (aggregation number Nagg = 40 chains) resulted in a narrow Gaussian distribution of Nagg centered around 40. While not fully equilibrated, this distribution supports the supposition that L64 micelles with Nagg = 40 are representative of the conditions considered and model employed. Detailed analysis of intramicellar monomers distribution and micelle shapes revealed that L64 micelles have a scalene ellipsoidal shape. Additional simulations of solutions containing 125 micelles constrained to have Nagg = 40 at polymer volume fractions of 0.024 and 0.110 were performed to study micelle-micelle structure factor, single micelle form factor, and total scattering intensity. The ability of various models utilized in analysis of scattering profiles in micellar solutions to describe the structure of the model L64 solutions was investigated. Investigation of the potential of mean force between two micelles reveals that the interactions between micelles are repulsive but on a length scale smaller than the mean micelle diameter, indicating that the micellar shape fluctuations are important in determining intermicellar interactions.  相似文献   

6.
7.
8.
A review is given of the most common models of ionic-pair association used by Bjerrum, Fuoss, and Eigen to supplement the breakdown of the Debye-Hückel law for the mean activity coefficient of symmetrical electrolytes in lower-dielectric-constant solvents. The compressibility and pressure equations of Rasaiah and Friedman and the virial equation are used to rederive the activity coefficients from the distribution functions of Meeron and of Debye and Hückel. The results are compared to the well-known results of Debye and Hückel and that of Bjerrum. In each case the anion-cation pair association concept of Bjerrum is verified. Finally, a discussion is included on the best evaluation of the critical distance which distinguishes between free and associated ions. The activity equation is easily generalized to any short-range Hamiltonian model.This paper is based in part on the thesis of M.-C. Justice, Université Pierre et Marie Curie (Paris VI), in June 1974, in partial fulfillment of the requirements for the degree of Docteur d'Etat.  相似文献   

9.
10.
Complex formation between octyl beta-D-glucopyranoside (OG) and alpha-cyclodextrin (alphaCD) was investigated on the basis of three highly accurate and appropriate experimental techniques. First, surface tension measurements showed that alphaCD directly acts on the surfactant monomers in the aqueous phase, leading to progressive depletion of the air-water interface with increasing cyclodextrin contents. Significant shift of OG critical micelle concentration (cmc) was consequently observed: the higher alphaCD concentration, the higher the cmc value. Experiments performed at surfactant and cyclodextrin concentrations in the Gibbs regime of surface tension versus OG content were performed on one hand to establish Job's plot that showed 1:1 stoichiometry of the OG-alphaCD complex and on the other hand to calculate the association constant found equal to (1.85 +/- 0.35) x 10(3) L mol(-1). An inclusion process of the surfactant alkyl residue within the cyclodextrin cavity was confirmed by one-dimensional (1)H NMR, and the structure of the mixed assembly was extensively characterized by two-dimensional NOESY (1)H NMR. OG penetrates alphaCD so that its hydrocarbon chain is embedded inside the cyclodextrin cavity, and its polar head as well as the alpha-methylene group emerges outside the alphaCD secondary face. Solubility behavior of the OG-alphaCD complex in a wide range of host-guest ratios and concentrations was finally examined by turbidity recording and optical microscopy. At very low free cyclodextrin levels in the solution, the complex presented high solubility behavior up to more than 70 mM. By increasing nonassociated alphaCD in the mixture, propensity of the cyclodextrin molecules to crystallize was observed at concentrations far below the 100 mM aqueous solubility of the pure cyclodextrin. The hexagonal shape of the crystals seen in the optical microscopy images suggested they were, partially at least, composed of the solid complex.  相似文献   

11.
The classic analysis of Rayleigh light scattering (LS) is re-examined for multi-component protein solutions, within the context of Kirkwood-Buff (KB) theory as well as a more generalized canonical treatment. Significant differences arise when traditional treatments that approximate constant pressure and neglect concentration fluctuations in one or more (co)solvent/co-solute species are compared with more rigorous treatments at constant volume and with all species free to fluctuate. For dilute solutions, it is shown that LS can be used to rigorously and unambiguously obtain values for the osmotic second virial coefficient (B(22)), in contrast with recent arguments regarding protein interactions deduced from LS experiments. For more concentrated solutions, it is shown that conventional analysis over(under)-estimates the magnitude of B(22) for significantly repulsive(attractive) conditions, and that protein-protein KB integrals (G(22)) are the more relevant quantity obtainable from LS. Published data for α-chymotrypsinogen A and a series of monoclonal antibodies at different pH and salt concentrations are re-analyzed using traditional and new treatments. The results illustrate that while traditional analysis may be sufficient if one is interested in only the sign of B(22) or G(22), the quantitative values can be significantly in error. A simple approach is illustrated for determining whether protein concentration (c(2)) is sufficiently dilute for B(22) to apply, and for correcting B(22) values from traditional LS regression at higher c(2) values. The apparent molecular weight M(2, app) obtained from LS is shown to generally not be equal to the true molecular weight, with the differences arising from a combination of protein-solute and protein-cosolute interactions that may, in principle, also be determined from LS.  相似文献   

12.
The enthalpies of dissolution of imino acid L-proline in aqueous solutions of methanol, 2-propanol, ethylene glycol, glycerin, and urea are measured by the calorimetric method at 313.15 K. Enthalpic parameters of the interaction of L-proline with nonaqueous components are calculated and compared with the data at 298.15 K. It is found that the sign of the heat capacity parameter of the pair and ternary interactions depends on whether the nonaqueous solvent component is a destroyer or stabilizer of the water structure. Partial molar heat capacities of proline in mixed solvents are obtained by the integral dissolution heat method. Temperature changes in the reduced enthalpy and entropy of the proline solution are determined at an increase in the temperature from 298 K to 313 K. It is shown that there is entropyenthalpy compensation at temperature changes in the characteristics during dissolution.  相似文献   

13.
Two quantities ηrel and are applied to study the nonideal acetone–water association mixture. An all-atom acetone model and a TIP5P water model have been adopted for molecular dynamics simulation. We study the transport properties of the system comparing the 's of strong hydrogen bond and weak contact based on transport properties, MD simulations together with NMR experimental data and find good agreement of concentration dependence, which exhibits the cooperation effect.  相似文献   

14.
Experimental measurements of density at different temperatures ranging from 293.15 to 313.15 K, the speed of sound and osmotic coefficients at 298.15 K for aqueous solution of 1-ethyl-3-methylimidazolium bromide ([Emim][Br]), and osmotic coefficients at 298.15 K for aqueous solutions of 1-butyl-3-methylimidazolium chloride ([Bmim][Cl]) in the dilute concentration region are taken. The data are used to obtain compressibilities, expansivity, apparent and limiting molar properties, internal pressure, activity, and activity coefficients for [Emim][Br] in aqueous solutions. Experimental activity coefficient data are compared with that obtained from Debye-Hückel and Pitzer models. The activity data are further used to obtain the hydration number and the osmotic second virial coefficients of ionic liquids. Partial molar entropies of [Bmim][Cl] are also obtained using the free-energy and enthalpy data. The distance of the closest approach of ions is estimated using the activity data for ILs in aqueous solutions and is compared with that of X-ray data analysis in the solid phase. The measured data show that the concentration dependence for aqueous solutions of [Emim][Br] can be accounted for in terms of the hydrophobic hydration of ions and that this IL exhibits Coulombic interactions as well as hydrophobic hydration for both the cations and anions. The small hydration numbers for the studied ILs indicate that the low charge density of cations and their hydrophobic nature is responsible for the formation of the water-structure-enforced ion pairs.  相似文献   

15.
16.
A vibrational analysis using FTIR and Raman spectroscopies was carried out on aqueous glucose solutions with a wide range of solute molar fractions and temperatures. The analysis was aimed at revealing structural changes in the local hydrogen-bonding (HB) network of liquid water, correlating these with the conservative properties of biomolecules, and comparing them with those of other sugars. The results of our measurements clearly show that the action of glucose is 2-fold; on one hand, there is a linkage with free hydroxyls of water; on the other, there is a slight lessening of the ordered (tetrahedral) H-bonded assembly of bulk H(2)O. These opposite effects do not balance each other, so the average HB interaction strength decreases on increasing glucose concentration. As a result, there is a reduction in the temperature dependence of solutions structure. In our opinion, this could be related to the low bioprotective action of this carbohydrate.  相似文献   

17.
Nuclear-magnetic-relaxation studies of a range of aqueous mono- and disaccharide solutions are reported. These include17O relaxation of solvent and1H,2H,13C, and17O relaxation of various solutes. The limitations of nuclear-magnetic relaxation for providing direct indications of solvent motions or extents of hydration of these sugars are outlined. In contrast to the solvent studies, the motional properties of the solutes themselves have been reasonably well defined, with1H,2H, and13C studies of the sugar ring C–H groups all indicating very similar rotational correlation times. Shorter correlation times estimated for the –CH2OH and –OH side chains, implying that internal motions make a significant contribution to the relaxation of these groups. Differences in reorientation rates of pentose monosaccharides, hexose monosaccharides, and disaccharides are discussed in terms of molecular size and solvent interactions. In every case examined, the solute NMR rotational correlation time is in serious disagreement with that expected from previous dielectric-relaxation studies. Some of the implications of this discrepancy are considered.  相似文献   

18.
Thermodynamic characteristics are calculated for aqueous diamine solutions prepared by substituting an amino group for the hydroxyl group of amino alcohols. Patterns are revealed in the change of the structural properties of the mixtures. The correlation between the entropy and enthalpy characteristics of the water–diamine systems and the excess packing coefficients suggests that the universal interactions determine the structural and energy properties of aqueous solutions of the studied diamines. The form of the concentration dependences of the structural and thermodynamic characteristics in the studied systems is found to be symbatic with the data for the mixtures of water with aprotic amides. The reasons for this are discussed by comparing the results with our previously published data for aqueous solutions of aprotic amides.  相似文献   

19.
Thermodynamic properties of aqueous alcohol and polyol solutions   总被引:1,自引:0,他引:1  
In this work, we present experimental results for partial molar volumes and viscosities of aqueous solutions of n-propanol, 1,2-propanediol, 1,3-propanediol and 1,2,3-propanetriol at 25.00°C and literature data for other systems. The thermodynamic behavior of aqueous alcohol and polyol solutions is discussed in terms of the relationship between polar and non-polar groups and their effect on water structure. The relationship of hydroxyl groups to the number of non-polar groups in the solute determines the balance between hydrophobic and hydrophilic interactions and as a direct consequence, the thermodynamic behavior of properties such as partial molar volumes, and viscosity. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
Journal of Structural Chemistry - Thermodynamic characteristics are calculated for aqueous alkanolamine solutions that are obtained by substituting alkyl radicals for the protons in the amino group...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号