首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Unfolded vs native CO-coordinated horse heart cytochrome c (h-cyt c) and a heme axial methionine mutant cyt c552 from Hydrogenobacter thermophilus ( Ht-M61A) are studied by IR absorption spectroscopy and ultrafast 2D-IR vibrational echo spectroscopy of the CO stretching mode. The unfolding is induced by guanidinium hydrochloride (GuHCl). The CO IR absorption spectra for both h-cyt c and Ht-M61A shift to the red as the GuHCl concentration is increased through the concentration region over which unfolding occurs. The spectra for the unfolded state are substantially broader than the spectra for the native proteins. A plot of the CO peak position vs GuHCl concentration produces a sigmoidal curve that overlays the concentration-dependent circular dichroism (CD) data of the CO-coordinated forms of both Ht-M61A and h-cyt c within experimental error. The coincidence of the CO peak shift curve with the CD curves demonstrates that the CO vibrational frequency is sensitive to the structural changes induced by the denaturant. 2D-IR vibrational echo experiments are performed on native Ht-M61A and on the protein in low- and high-concentration GuHCl solutions. The 2D-IR vibrational echo is sensitive to the global protein structural dynamics on time scales from subpicosecond to greater than 100 ps through the change in the shape of the 2D spectrum with time (spectral diffusion). At the high GuHCl concentration (5.1 M), at which Ht-M61A is essentially fully denatured as judged by CD, a very large reduction in dynamics is observed compared to the native protein within the approximately 100 ps time window of the experiment. The results suggest the denatured protein may be in a glassy-like state involving hydrophobic collapse around the heme.  相似文献   

2.
Ultrafast two-dimensional infrared (2D-IR) vibrational echo spectroscopy can probe structural dynamics under thermal equilibrium conditions on time scales ranging from femtoseconds to approximately 100 ps and longer. One of the important uses of 2D-IR spectroscopy is to monitor the dynamical evolution of a molecular system by reporting the time dependent frequency fluctuations of an ensemble of vibrational probes. The vibrational frequency-frequency correlation function (FFCF) is the connection between the experimental observables and the microscopic molecular dynamics and is thus the central object of interest in studying dynamics with 2D-IR vibrational echo spectroscopy. A new observable is presented that greatly simplifies the extraction of the FFCF from experimental data. The observable is the inverse of the center line slope (CLS) of the 2D spectrum. The CLS is the inverse of the slope of the line that connects the maxima of the peaks of a series of cuts through the 2D spectrum that are parallel to the frequency axis associated with the first electric field-matter interaction. The CLS varies from a maximum of 1 to 0 as spectral diffusion proceeds. It is shown analytically to second order in time that the CLS is the T(w) (time between pulses 2 and 3) dependent part of the FFCF. The procedure to extract the FFCF from the CLS is described, and it is shown that the T(w) independent homogeneous contribution to the FFCF can also be recovered to yield the full FFCF. The method is demonstrated by extracting FFCFs from families of calculated 2D-IR spectra and the linear absorption spectra produced from known FFCFs. Sources and magnitudes of errors in the procedure are quantified, and it is shown that in most circumstances, they are negligible. It is also demonstrated that the CLS is essentially unaffected by Fourier filtering methods (apodization), which can significantly increase the efficiency of data acquisition and spectral resolution, when the apodization is applied along the axis used for obtaining the CLS and is symmetrical about tau=0. The CLS is also unchanged by finite pulse durations that broaden 2D spectra.  相似文献   

3.
The CN stretching vibrations of the guanidyl group in the arginine dipeptide side chain are examined by two-dimensional infrared spectroscopy. In D(2)O, the spectra display two distinct diagonal peaks. These nearly degenerate modes undergo ultrafast energy transfer. The energy-transfer rate was determined directly from the 2D-IR spectra to be 1/2.1 ps(-1). The cross peaks in 2D-IR arising from the energy transfer provide a definitive identification of arginine in larger proteins. An example of arginine in the transmembrane protein M2, found in influenza viruses, is given.  相似文献   

4.
Ultrafast two-dimensional infrared (2D) spectroscopy has been applied to study the structure and vibrational dynamics of (mu-S(CH2)3S)Fe2(CO)6, a model compound of the active site of the [FeFe]-hydrogenase enzyme system. Comparison of 2D-IR spectra of (mu-S(CH2)3S)Fe2(CO)6 with density functional theory calculations has determined that the solution-phase structure of this molecule is similar to that observed in the crystalline phase and in good agreement with gas-phase simulations. In addition, vibrational coupling and rapid (<5 ps) solvent-mediated equilibration of energy between vibrationally excited states of the carbonyl ligands of the di-iron-based active site model are observed prior to slower (approximately 100 ps) relaxation to the ground state. These dynamics are shown to be solvent-dependent and form a basis for the future determination of the vibrational interactions between active site and protein.  相似文献   

5.
Hydrogen bonds formed between C-H and various hydrogen bond acceptors play important roles in the structure of proteins and organic crystals, and the mechanisms of C-H bond cleavage reactions. Chloroform, a C-H hydrogen bond donor, can form weak hydrogen-bonded complexes with acetone and with dimethylsulfoxide (DMSO). When chloroform is dissolved in a mixed solvent consisting of acetone and DMSO, both types of hydrogen-bonded complexes exist. The two complexes, chloroform-acetone and chloroform-DMSO, are in equilibrium, and they rapidly interconvert by chloroform exchanging hydrogen bond acceptors. This fast hydrogen bond acceptor substitution reaction is probed using ultrafast two-dimensional infrared (2D-IR) vibrational echo chemical exchange spectroscopy. Deuterated chloroform is used in the experiments, and the 2D-IR spectrum of the C-D stretching mode is measured. The chemical exchange of the chloroform hydrogen bonding partners is tracked by observing the time-dependent growth of off-diagonal peaks in the 2D-IR spectra. The measured substitution rate is 1/30 ps for an acetone molecule to replace a DMSO molecule in a chloroform-DMSO complex and 1/45 ps for a DMSO molecule to replace an acetone molecule in a chloroform-acetone complex. Free chloroform exists in the mixed solvent, and it acts as a reactive intermediate in the substitution reaction, analogous to a SN1 type reaction. From the measured rates and the equilibrium concentrations of acetone and DMSO, the dissociation rates for the chloroform-DMSO and chloroform-acetone complexes are found to be 1/24 ps and 1/5.5 ps, respectively. The difference between the measured rate for the complete substitution reaction and the rate for complex dissociation corresponds to the diffusion limited rate. The estimated diffusion limited rate agrees well with the result from a Smoluchowski treatment of diffusive reactions.  相似文献   

6.
Melittin, an amphipathic peptide from honeybee venom, consists of 26 amino acid residues and adopts different conformations from a random coil, to an alpha-helix, and to a self-assembled tetramer under certain aqueous environments. We report here our systematic studies of the hydration dynamics in these conformations using single intrinsic tryptophan (W19) as a molecular probe. With femtosecond resolution, we observed the solvation dynamics occurring in 0.62 and 14.7 ps in a random-coiled primary structure. The former represents bulklike water motion, and the latter reflects surface-type hydration dynamics of proteins. As a comparison, a model tripeptide (KWK) was also studied. At a membrane-water interface, melittin folds into a secondary alpha-helical structure, and the interfacial water motion was found to take as long as 114 ps, indicating a well-ordered water structure along the membrane surface. In high-salt aqueous solution, the dielectric screening and ionic solvation promote the hydrophobic core collapse in melittin aggregation and facilitate the tetramer formation. This self-assembled tertiary structure is also stabilized by the strong hydrophilic interactions of charged C-terminal residues and associated ions with water molecules in the two assembled regions. The hydration dynamics was observed to occur in 87 ps, significantly slower than typical water relaxation at protein surfaces but similar to water motion at membrane interfaces. Thus, the observed time scale of approximately 100 ps probably implies appropriate water mobility for mediating the formation of high-order structures of melittin in an alpha-helix and a self-assembled tetramer. These results elucidate the critical role of hydration dynamics in peptide conformational transitions and protein structural stability and integrity.  相似文献   

7.
Femtosecond pump-probe studies of the photodissociation and subsequent radical cage pair recombination dynamics of the organometallic dimer [Cp'Mo(CO)3]2 (Cp' = eta5-C5H4CH3) are reported. The dynamics following photodissociation were studied in numerous noncoordinating hydrocarbon solvents. The results indicate that primary geminate recombination occurs on an ultrafast time scale (tau approximately 5 ps) and the efficiency of cage escape is inversely proportional to solvent viscosity. Investigation of the time-dependent anisotropy in this system allowed for an estimate of the rotational correlation time of the radical fragments (tau approximately 5-25 ps). Comparison of the rates of rotational motion with the population kinetics shows that the primary solvent cage dynamics and recombination efficiency are controlled by radical diffusion and not by radical rotation.  相似文献   

8.
The excited-state dynamics of two conjugated bis[(porphinato)zinc(II)] (bis[PZn]) species, bis[(5,5'-10,20-bis[3,5-bis(3,3-dimethyl-1-butyloxy)phenyl]porphinato)zinc(II)]ethyne (DD) and [(5,-10,20-bis[3,5-bis(3,3-dimethyl-1-butyloxy)phenyl]porphinato)zinc(II)]-[(5',-15'-ethynyl-10',20'-bis(heptafluoropropyl)porphinato)zinc(II)]ethyne (DA), were studied by pump-probe transient absorption spectroscopy and hole burning techniques. Both of these meso-to-meso ethyne-bridged bis[PZn] compounds display intense near-infrared (NIR) transient S(1)-->S(n) absorptions and fast relaxation of their initially prepared, electronically excited Q states. Solvational and conformational relaxation play key roles in both DD and DA ground- and excited-state dynamics; in addition to these processes that drive spectral diffusion, electronically excited DA manifests a 3-fold diminution of S(1)-->S(0) oscillator strength on a 2-20 ps time scale. Both DD and DA display ground-state and time-dependent excited-state conformational heterogeneity; hole burning experiments show that this conformational heterogeneity is reflected largely by the extent of porphyrin-porphyrin conjugation, which varies as a function of the pigment-pigment dihedral angle distribution. While spectral diffusion can be seen for both compounds, rotational dynamics driving configurational averaging (tau approximately 30 ps), along with a small solvational contribution, account for essentially all of the spectral changes observed for electronically excited DD. For DA, supplementary relaxation processes play key roles in the excited-state dynamics. Two fast solvational components (0.27 and 1.7 ps) increase the DA excited-state dipole moment and reduce concomitantly the corresponding S(1)-->S(0) transition oscillator strength; these data show that these effects derive from a time-dependent change of the degree of DA S(1)-state polarization, which is stimulated by solvation and enhanced excited-state inner-sphere structural relaxation.  相似文献   

9.
利用飞秒二维红外实验方法, 结合稳态红外光谱实验和计算化学手段, 对β-肽模型分子N-乙基丙酰胺(NEPA)的超快结构动力学进行了研究. 结果表明, 在水溶液中, NEPA具有类α-肽酰胺-I 带的振动特征, 并表现出对分子结构和化学环境的灵敏性. 二维红外光谱动力学结果揭示了一个1 ps 左右的光谱扩散时间, 与酰胺-水之间的氢键结构动力学时间尺度一致.  相似文献   

10.
The vibrational dynamics of (μ-propanedithiolate)Fe(2)(CO)(4)(CN)(2)(2-), a model compound of the active site of the [FeFe]-hydrogenase enzyme, have been examined via ultrafast 2D-IR spectroscopy. The results indicate that the vibrational coupling between the stretching modes of the CO and CN ligands is small and restricted to certain modes but the slow growth of off-diagonal peaks is assigned to population transfer processes occurring between these modes on timescales of 30-40 ps. Analysis of the dynamics in concert with anharmonic density functional theory simulations shows that the presence of CN ligands alters the vibrational relaxation dynamics of the CO modes in comparison to all-carbonyl model systems and suggests that the presence of these ligands in the enzyme may be an important feature in terms of directing the vibrational relaxation mechanism.  相似文献   

11.
We present a first-principles theoretical study of vibrational spectral diffusion and hydrogen bond dynamics in heavy water without using any empirical model potentials. The calculations are based on ab initio molecular dynamics simulations for trajectory generation and a time series analysis using the wavelet method for frequency calculations. It is found that, in deuterated water, although a one-to-one relation does not exist between the instantaneous frequency of an OD bond and the distance of its associated hydrogen bond, such a relation does hold on average. The dynamics of spectral diffusion is investigated by means of frequency-time correlation and spectral hole dynamics calculations. Both of these functions are found to have a short-time decay with a time scale of approximately 100 fs corresponding to dynamics of intact hydrogen bonds and a slower long-time decay with a time constant of approximately 2 ps corresponding to lifetimes of hydrogen bonds. The connection of the slower time scale to the dynamics of local structural relaxation is also discussed. The dynamics of hydrogen bond making is shown to have a rather fast time scale of approximately 100 fs; hence, it can also contribute to the short-time dynamics of spectral diffusion. A damped oscillation is also found at around 150-200 fs, which is shown to have come from underdamped intermolecular vibrations of a hydrogen-bonded water pair. Such assignments are confirmed by independent calculations of power spectra of intermolecular motion and hydrogen bond kinetics using the population correlation function formalism. The details of the time constants of frequency correlations and spectral shifts are found to depend on the frequencies of chosen OD bonds and are analyzed in terms of the dynamics of hydrogen bonds of varying strengths and also of free non-hydrogen-bonded OD groups.  相似文献   

12.
The potential energy surface of a protein is rough. This intrinsic energetic roughness affects diffusion, and hence the kinetics. The dynamics of a system undergoing Brownian motion on this surface in an implicit continuum solvent simulation can be tuned via the frictional drag or collision frequency to be comparable to that of experiments or explicit solvent simulations. We show that the kinetic rate constant for a local rotational isomerization in stochastic simulations with continuum solvent and a collision frequency of 2 ps(-1) is about 10(4) times faster than that in explicit water and experiments. A further increase in the collision frequency to 60 ps(-1) slows down the dynamics, but does not fully compensate for the lack of explicit water. We also show that the addition of explicit water does not only slow down the dynamics by increasing the frictional drag, but also increases the local energetic roughness of the energy landscape by as much as 1.0 kcal/mol.  相似文献   

13.
Ultrafast two-dimensional infrared (2D-IR) vibrational echo spectroscopy can probe the fast structural evolution of molecular systems under thermal equilibrium conditions. Structural dynamics are tracked by observing the time evolution of the 2D-IR spectrum, which is caused by frequency fluctuations of vibrational mode(s) excited during the experiment. However, there are a variety of effects that can produce line shape distortions and prevent the correct determination of the frequency-frequency correlation function (FFCF), which describes the frequency fluctuations and connects the experimental observables to a molecular level depiction of dynamics. In addition, it can be useful to analyze different parts of the 2D spectrum to determine if dynamics are different for subensembles of molecules that have different initial absorption frequencies in the inhomogeneously broadened absorption line. Here, an important extension to a theoretical method for extraction of the FFCF from 2D-IR spectra is described. The experimental observable is the center line slope (CLSomega(m)) of the 2D-IR spectrum. The CLSomega(m) is obtained by taking slices through the 2D spectrum parallel to the detection frequency axis (omega(m)). Each slice is a spectrum. The slope of the line connecting the frequencies of the maxima of the sliced spectra is the CLSomega(m). The change in slope of the CLSomega(m) as a function of time is directly related to the FFCF and can be used to obtain the complete FFCF. CLSomega(m) is immune to line shape distortions caused by destructive interference between bands arising from vibrational echo emission, from the 0-1 vibrational transition (positive), and from the 1-2 vibrational transition (negative) in the 2D-IR spectrum. The immunity to the destructive interference enables the CLSomega(m) method to compare different parts of the bands as well as comparing the 0-1 and 1-2 bands. Also, line shape distortions caused by solvent background absorption and finite pulse durations do not affect the determination of the FFCF with the CLSomega(m) method. The CLSomega(m) can also provide information on the cross correlation between frequency fluctuations of the 0-1 and 1-2 vibrational transitions.  相似文献   

14.
Femtosecond/picosecond time-resolved fluorescence study of hydrophilic polymer fine particles (polyacrylamide, PAAm) was reported. Ultrafast fluorescence dynamics of polymer/water solution was monitored using a fluorescent probe molecule (C153). In the femtosecond time-resolved fluorescence measurement at 480 nm, slowly decay components having lifetimes of tau(1) approximately 53 ps and tau(2) approximately 5 ns were observed in addition to rapid fluorescence decay. Picosecond time-resolved fluorescence spectra of C153/PAAm/H2O solution were also measured. In the time-resolved fluorescence spectra of C153/PAAm/H2O, a peak shift from 490 to 515 nm was measured, which can be assigned to the solvation dynamics of polymer fine particles. The fluorescence peak shift was related to the solvation response function and two time constants were determined (tau(3) approximately 50 ps and tau(4) approximately 467 ps). Therefore, the tau(1) component observed in the femtosecond time-resolved fluorescence measurement was assigned to the solvation dynamics that was observed only in the presence of polymer fine particles. Rotational diffusion measurements were also carried out on the basis of the picosecond time-resolved fluorescence spectra. In the C153/PAAm/H2O solution, anisotropy decay having two different time constants was also derived (tau(6) approximately 76 ps and tau(7) approximately 676 ps), indicating the presence of two different microscopic molecular environments around the polymer surface. Using the Stokes-Einstein-Debye (SED) equation, microscopic viscosity around the polymer surface was evaluated. For the area that gave a rotational diffusion time of tau(6) approximately 76 ps, the calculated viscosity is approximately 1.1 cP and for tau(7) approximately 676 ps, it is approximately 10 cP. The calculated viscosity values clearly revealed that there are two different molecular environments around the polyacrylamide fine particles.  相似文献   

15.
The ultrafast equilibrium fluctuations of the Fe(III)-NO complex of a single point mutation of Myoglobin (H64Q) have been studied using Fourier Transform 2D-IR spectroscopy. Comparison with data from wild type Myoglobin (wt-Mb) shows the presence of two conformational substates of the mutant haem pocket where only one exists in the wild type form. One of the substates of the mutant exhibits an almost identical NO stretching frequency and spectral diffusion dynamics to wt-Mb while the other is distinctly different in both respects. The remarkably contrasting dynamics are largely attributable to interactions between the NO ligand and a nearby distal side chain which provides a basis for understanding the roles of these side chains in other ferric haem proteins.  相似文献   

16.
Amyloid proteins that undergo self-assembly to form insoluble fibrillar aggregates have attracted much attention due to their role in biological and pathological significance in amyloidosis. This study aims to understand the amyloid aggregation dynamics of insulin (INS) in H2O using two-dimensional infrared (2D-IR) spectroscopy. Conventional IR studies have been performed in D2O to avoid spectral congestion despite distinct H–D isotope effects. We observed a slowdown of the INS fibrillation process in D2O compared to that in H2O. The 2D-IR results reveal that different quaternary structures of INS at the onset of the nucleation phase caused the distinct fibrillation pathways of INS in H2O and D2O. A few different biophysical analysis, including solution-phase small-angle X-ray scattering combined with molecular dynamics simulations and other spectroscopic techniques, support our 2D-IR investigation results, providing insight into mechanistic details of distinct structural transition dynamics of INS in water. We found the delayed structural transition in D2O is due to the kinetic isotope effect at an early stage of fibrillation of INS in D2O, i.e., enhanced dimer formation of INS in D2O. Our 2D-IR and biophysical analysis provide insight into mechanistic details of structural transition dynamics of INS in water. This study demonstrates an innovative 2D-IR approach for studying protein dynamics in H2O, which will open the way for observing protein dynamics under biological conditions without IR spectroscopic interference by water vibrations.

This study aims to understand the structural transition dynamics of INS during amyloid aggregation in H2O using 2D-IR spectroscopy. The results show that distinct fibrillations in D2O and H2O originated from different quaternary structures of INS.  相似文献   

17.
In this paper we introduce a novel approach for highly selective and sensitive analysis of cysteines (glutathione, cysteine, and homocysteine). This method is based on the detection of intramolecular fluorescence resonance energy transfer (FRET) in a liquid chromatography (LC) system after double-labeling of the amino and sulfhydryl groups of the cysteines. In this detection process, we monitored the FRET between the amine-derivatized and thiol-derivatized fluorophores. We screened 16 combinations of fluorescent reagents. As a result, FRET occurred most effectively when the sulfhydryl and amino groups of the cysteines were derivatized with 7-diethylamino-3-[{4'-(iodoacetyl)amino}phenyl]-4-methylcoumarin (DCIA, Ex/Em 390/480 nm) and 4-fluoro-7-nitrobenz-2-oxo-1,3-diazole (NBD-F, Ex/Em 480/540 nm), respectively, in this order. The double-labeled cysteines emitted NBD-F fluorescence (540 nm) through an intramolecular FRET process when they were excited at the wavelength of maximum excitation of DCIA (390 nm). The generation of FRET was confirmed by comparison with analysis of n-amylamine or tryptophan (amines without a sulfhydryl group) and 6-mercaptohexanol (thiol without an amino group) performed using LC and a three-dimensional fluorescence detection system. We were able to separate the double-labeled cysteines (DCIA and NBD-F) when performing LC on an ODS column with isocratic elution. The limits of quantification (signal-to-noise ratio = 10) and detection (signal-to-noise ratio = 3) for the cysteines, for a 20-μL injection volume, were in the range 150-670 fmol and 46-200 fmol, respectively. The sensitivity of the intramolecular FRET-forming derivatization method is higher than that of a system which takes advantage of conventional detection of the derivatives. Furthermore, this method provides sufficient selectivity and sensitivity to determine the total cysteines present in the plasma of healthy humans.  相似文献   

18.
The quasi-bound biological or structured water molecules in a protein play a key role in many biological processes. The dynamics of the biological water has been studied by femtosecond spectroscopy and large-scale computer simulations. Solvation dynamics of biological water displays an almost bulk-water like ultrafast component (approximately 1 ps) and a surprising slow component at the 100-1000 ps time scale. In this article, we discuss several examples of the ultraslow component, its possible origin and implications in biology. We show that the ultrafast (approximately 1 ps) component arises from an extended hydrogen bond network while the ultraslow component originates from binding of a water molecule to a biological macromolecule.  相似文献   

19.
The relaxation dynamics of the indoline dye D149, a well-known sensitizer for photoelectrochemical solar cells, have been extensively characterized in various organic solvents by combining results from ultrafast pump-supercontinuum probe (PSCP) spectroscopy, transient UV-pump VIS-probe spectroscopy, time-correlated single-photon counting (TCSPC) measurements as well as steady-state absorption and fluorescence. In the steady-state spectra, the position of the absorption maximum shows only a weak solvent dependence, whereas the fluorescence Stokes shift Δν?(F) correlates with solvent polarity. Photoexcitation at around 480 nm provides access to the S(1) state of D149 which exhibits solvation dynamics on characteristic timescales, as monitored by a red-shift of the stimulated emission and spectral development of the excited-state absorption in the transient PSCP spectra. In all cases, the spectral dynamics can be modeled by a global kinetic analysis using a time-dependent S(1) spectrum. The lifetime τ(1) of the S(1) state roughly correlates with polarity [acetonitrile (280 ps) < acetone (540 ps) < THF (720 ps) < chloroform (800 ps)], yet in alcohols it is much shorter [methanol (99 ps) < ethanol (178 ps) < acetonitrile (280 ps)], suggesting an appreciable influence of hydrogen bonding on the dynamics. A minor component with a characteristic time constant in the range 19-30 ps, readily observed in the PSCP spectra of D149 in acetonitrile and THF, is likely due to removal of vibrational excess energy from the S(1) state by collisions with solvent molecules. Additional weak fluorescence in the range 390-500 nm is observed upon excitation in the S(0)→S(2) band, which contains short-lived S(2)→S(0) emission of D149. Transient absorption signals after excitation at 377.5 nm yield an additional time constant in the subpicosecond range, representing the lifetime of the S(2) state. S(2) excitation also produces photoproducts.  相似文献   

20.
Atomistic molecular dynamics simulations are used to study generation 5 polyamidoamine (PAMAM) dendrimers immersed in a bath of water. We interpret the results in terms of three classes of water: buried water well inside of the dendrimer surface, surface water associated with the dendrimer-water interface, and bulk water well outside of the dendrimer. We studied the dynamic and thermodynamic properties of the water at three pH values: high pH with none of the primary or tertiary amines protonated, intermediate pH with only the primary amines protonated, and low pH with all amines protonated. For all pH values we find that both buried and surface water exhibit two relaxation times: a fast relaxation ( approximately 1 ps) corresponding to the libration motion of the water and a slow ( approximately 20 ps) diffusional component related to the escaping of water from one domain to another. In contrast for bulk water the fast relaxation is approximately 0.4 ps while the slow relaxation is approximately 14 ps. These results are similar to those found in biological systems, where the fast relaxation is found to be approximately 1 ps while the slow relaxation ranges from 20 to 1000 ps. We used the 2PT MD method to extract the vibrational (power) spectrum and found substantial differences for the three classes of water. The translational diffusion coefficient for buried water is 11-33% (depending on pH) of the bulk value while the surface water is about 80%. The change in rotational diffusion is quite similar: 21-45% of the bulk value for buried water and 80% for surface water. This shows that translational and rotational dynamics of water are affected by the PAMAM-water interactions as well as due to the confinement in the interior of the dendrimer. We find that the reduction of translational or rotational diffusion is accompanied by a blue shift of the corresponding libration motions ( approximately 10 cm(-1) for translation, approximately 35 cm(-1) for rotation), indicating higher local force constants for these motions. These effects are most pronounced for the lowest pH, probably because of the increased rigidity caused by the internal charges. From the vibrational density of states we also calculate the enthalpies and entropies of the various waters. We find that water molecules are enthalpically favored near the PAMAM dendrimer: energy for surface water is approximately 0.1 kcal/mol lower to that in the bulk, and approximately 0.5-0.9 kcal/mol lower for buried water. In contrast, we find that both the buried and surface water are entropically unfavored: buried water is 0.9-2.2 kcal/mol lower than the bulk while the surface water is 0.1-0.2 kcal/mol lower. The net result is a thermodynamically unfavored state of the water surrounding the PAMAM dendrimer: 0.4-1.3 kcal/mol higher for buried water and 0.1-0.2 kcal/mol for surface water. This excess free energy of the surface and buried waters is released when the PAMAM dendrimer binds to DNA or metal ions, providing an extra driving force.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号