首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 46 毫秒
1.
本文采用CFD方法,对某涡轮增压器的可调导叶向心涡轮流道内的流动进行了数值模拟,进行了三个导叶开度(100%,50%和20%)多个流动工况的定常和非定常流动计算.在与实验测试的特性参数比较的基础上,详细分析了叶轮流道内的的二次流动生成和发展,并且研究了导叶开度对二次流动的影响.  相似文献   

2.
涡轮动叶采用弯叶片的数值模拟及流场结构分析   总被引:3,自引:0,他引:3  
本文采用数值模拟的方法,对某型涡轮动叶,计算了±10°、±5°、0°、15°、20°七种倾角下的动叶流场,流场模拟的结果表明,采用正弯叶栅能够减少二次流损失,使总损失与常规动叶相比下降了约10%,并加强了下通道涡,上通道涡喊弱。  相似文献   

3.
论文以实际应用中出现破裂的向心涡轮为研究对象,研究导流叶片尾缘激波、导流叶片叶尖间隙泄漏流动以及导流叶片尾迹对转子叶片表面压力波动的干涉作用,定性确定这三种因素在转子叶片表面压力波动中所占比重大小,发现激波和导流叶片叶尖间隙泄漏流动所诱导的转子叶片压力波动位置。结果表明,激波和导流叶片叶尖间隙泄漏流动是导致转子叶片表面压力波动的主要因素;受向心涡轮叶轮进口形状的影响,激波只是和转子叶片前缘附近的吸力面发生作用,导流叶片开度减小,激波强度增大,转子叶片压力波动幅值明显增大;导流叶片叶尖和叶根间隙泄漏流动会导致转子叶片吸力面叶尖和叶根的压力波动明显增大,是转子叶片前缘叶尖发生高周疲劳的主要原因.  相似文献   

4.
本文基于数值模拟方法,对大弯角二维大小叶片叶栅和常规叶栅的稠度特性进行了详细的计算与分析.分析表明:大小叶片叶栅具有双稠度特性,中、高稠度以及小叶片为大叶片弦长的60%~80%时,大小叶片叶栅性能最佳;小叶片周向位置对大小叶片叶栅性能存在一定影响。由于气动布局的改变,传统定义的扩压因子难以实现对附面层发展的预测.  相似文献   

5.
本文以某MW级超临界二氧化碳(S-CO2)向心涡轮为研究对象,对S-CO2向心涡轮的设计体系展开进一步探索,并利用一维分析方法和三维数值模拟方法对其进行气动分析.文中先介绍了本课题组已经开发完成的针对向心涡轮喷嘴和转子叶轮的一维气动优化设计方法,然后补充向心涡轮进气蜗壳的设计方法,最后利用三维CFD方法对设计方案的进气...  相似文献   

6.
通过数值模拟的方法,揭示了整级涡轮叶片在旋转状态F的气膜冷却特性.计算采用六面体结构化网格,湍流模型选用k-ε两方程模型.计算中,主流进口雷诺数为7.7×104,旋转数分别为2.092,2.324和2.448,吹风比分别为0.5、1.0、1.5和2.0,冷却工质采用空气,对应射流主流密度比为1.03.计算结果与之前的实...  相似文献   

7.
对开式向心涡轮背部间隙流动特性进行计算分析,计算结果和实验符合较好。分析结果表明:背部间隙泄漏流量远小于叶顶间隙泄漏流量,但两者损失大小相当,可见背部间隙与叶顶间隙虽然在形式上相似,但流动特性及损失机理有所不同;背部机匣刮削效应增强了展向二次流强度,在吸力面附近出现较大的高熵区,同时背部间隙泄漏流在展向二次流的带动下源源不断向叶顶方向运动,与主流形成较强的掺混;相比之下,叶顶机匣刮削流和展向二次流相互抵消,叶顶间隙泄漏流被展向二次流限制在叶顶壁角附近,掺混损失相对较小。  相似文献   

8.
涡轮内外涵联立数值模拟   总被引:1,自引:0,他引:1  
本文对内涵高低压三级涡轮、涡轮出口支板通道、外涵通道以及内外涵混合段流动进行联立计算,给出了流场结构和流动分析。结果表明:联立数值模拟十分必要,是考察多部件匹配特性的有效手段。数值模拟的结果还表明:涡轮与支板的匹配不太理想,但气体通过支板后,仍能够接近轴向出气;混合段内外涵流动掺混作用并不强烈,由于掺混带来的气动损失并不严重。  相似文献   

9.
向心透平级内流动的数值研究   总被引:10,自引:0,他引:10  
本文基于三维N-S方程组,采用结构化网格,用数值方法模拟了一台75 kW微型燃气轮机中涡轮级内的流动。湍流模型采用Baldwin-Lomax模型,计算方法基于Jameson格式。结果表明:静叶流道在吸力面一侧,沿子午流线的前25%区域气流快速膨胀,而压力面在60%以后逐渐膨胀。一定的气流入口角能有效控制导叶内横向二次流动,并使得气流出口角更加均匀,其出口气流的落后角也有明显的减小。在叶轮流道内部的损失区主要集中在吸力面一侧,叶顶间隙的泄漏流动使得吸力面与叶顶间的角隅区的损失有明显加大,控制叶轮的径向间隙对控制流动损失有明显作用。  相似文献   

10.
湍流模型对涡轮数值模拟结果的影响   总被引:2,自引:0,他引:2  
以带试验结果的NASA单级跨音涡轮为研究对象,对NUMECA商业软件中的四种湍流模型在相同条件下进行三维、定常数值模拟,并与相应的试验结果对比,分析各湍流模型对涡轮数值模拟结果的影响.模拟结果表明:一方程的Spalart-Allmaras模型计算稳定性和解的精度都相对较高,两方程的两个模型对于算例类涡轮数值模拟精度较差.  相似文献   

11.
离心压气机叶尖间隙泄漏流动数值研究   总被引:4,自引:0,他引:4  
采用离心压气机计算机辅助设计系统,设计了一个离心压气机叶轮,对这一叶轮在不同叶尖间隙下内部流场进行了数值计算。给出了不同弦长截面二次流矢量、二次流流以及机匣壁面极限流线等计算结果。结果表明叶尖间隙的大小与泄漏流动的强度密切相关。分流叶片的泄漏流动随着叶尖间隙的增大而增强。通道涡与合适的叶尖间隙所形成的泄漏涡相互作用可以削弱泄漏强度,改善流动。  相似文献   

12.
离心压气机内部非定常流场的数值模拟   总被引:2,自引:0,他引:2  
应用NUMECA软件对跨声速离心压气机级动静叶相互干涉形成的三维非定常粘性流场进行了数值模拟,给出了不同时刻叶片表面压力系数的变化曲线,不同时刻不同流向位置截面上速度沿流道宽度方向分布的变化曲线.模拟结果表明压力场和速度场的非定常特性主要表现在叶轮出口、径向间隙以及整个扩压器内.压力面上的非定常现象较吸力面上显著.  相似文献   

13.
为了将旋转部件与静止部件之间不同压力的空间隔开,微燃机中采用了气封装置以减少泄流量。泄漏流量的大小,以及其对主流的干扰,微燃机设计时必须加以认真考虑。工作时通过间隙而泄漏的流量过大,必然会对其整体效率产生重大影响。通常,在间隙处采用特殊结构来控制泄流量的大小,减少间隙对微燃机总体效率的影响。本文采用三维数值模拟对微燃机压气机与透平之间的间隙流动进行模拟分析,通过不同工况的比较以及对其内部流场进行分析,研究了气封内部流动特性,使得微燃机总体计算可考虑间隙引起的泄流对微燃机总体效率的影响。  相似文献   

14.
本文对1 1/2对转涡轮低压动叶中激波结构等进行了详细的数值模拟.通过对流道中静压和马赫数等参数的分析发现,当高压动叶外伸波扫过低压动叶流道时,低压动叶前缘吸力面处产生了一道脱体弧形激波,流道中吸力面上产生了一道正激波,在脱体激波和正激波之间,存在着较强的膨胀波,这种分布与跨音压气机叶栅中的波系结构相似.当高压动叶尾迹扫过低压动叶时,低压动叶吸力面的压力会产生明显的波动,出现一个随时间变化的低压区.  相似文献   

15.
离心压缩机级内三维粘性流动数值分析   总被引:3,自引:0,他引:3  
本文介绍了用时间推进法进行离心压缩机级内全三维粘性流场的计算方法.该方法是作者在已完成的求解孤立叶排N-S方程的计算程序的基础上发展的,通过使用周向非均匀的叶排间隙混合平面概念来考虑离心叶轮与扩压器之间的相互影响,并依据质量守恒原则,对下游的进口气流角进行了修正,以保证了上下游叶排在相容的流动特性下工作.完成了离心压缩机级(包括叶轮与扩压器)三维粘性定常流场的计算及性能预测.应用本文所发展的程序,对某高炉鼓风机的叶轮及其叶片扩压器进行了计算.  相似文献   

16.
低速离心压气机的全工况数值模拟和校核   总被引:1,自引:0,他引:1  
本文选用不同的计算模型和网格数目在全流量域对NASA低速离心压气机进行了数值模拟,通过与实验数据的对比检验了计算结果的精度,为具有无叶扩压器结构的低压离心压气机确定了合理的计算方案。同时通过计算结果的观察和对比,分析了小流量下叶轮内部流场的部分变化特征。  相似文献   

17.
1+1/2对转涡轮中激波结构的数值研究   总被引:1,自引:3,他引:1  
本文对1 1/2对转涡轮中激波及激波/叶排干扰等进行了详细的数值模拟。分析发现,1 1/2对转涡轮高压动叶流道中压缩波系与常规涡轮流道中的压缩波系存在明显的不同。1 1/2对转涡轮高压动叶吸力面60%轴向弦长处产生了一组压缩波,它与内伸波相交。在常规涡轮中,这组压缩波将不会出现;内伸波在吸力面的反射波很强,不能忽略。在常规涡轮中,内伸波的反射波可以忽略。由于尾迹及低压动叶的作用,高压动叶外伸波的影响范围和强度呈现周期性的变化。  相似文献   

18.
为了研究采用对旋转轮的新型轴流式水轮机的非定常性能,应用三维非定常数值计算方法,对该新型水轮机进行了数值模拟研究.数值计算中,采用了全三维全流道的数值计算方法,基于DES(Detached Eddy Simulation)方法获得了对旋轴流水轮机的非定常流场和能量性能.计算结果显示,该新型水轮机在一个转动周期的不同时刻,其内部流场存在显著的非定常特性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号