首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
One method for monitoring individuals in live performances may be the use of vibration sensors, or accelerometers, rather than using microphones that pick up environmental noises as well as the vocal signals of interest. This study was concerned with a comparison of microphone and accelerometer monitoring of the amplitude characteristics of singers' voices. From the results obtained it appears that accelerometers are not applicable for monitoring amplitude characteristics of the voice, but are useful for periodicity measures. In addition, accelerometers may be of use in verifying the kinesthetic patterns sensed by a performer during the process of “singing into a mask” or producing the singer's “ring.”  相似文献   

2.
The paper describes a 3mm cryogenic mixer receiver using high doping density (“room-temperature”) Schottky diodes. The measured equivalent noise temperature Teq of the diodes is 109 K at 20 K, which is much higher than the Teq of the low doping density (“cryogenic”) diodes. In spite of this, the double-sideband (DSB) noise temperature of the cryogenic receiver developed is 55 K at 110 GHz, owing to the low conversion loss of the mixer and ultra-low noise of the PHEMT IF amplifier. This is the lowest noise temperature ever reported for a Schottky diode mixer receiver. The results obtained are useful for the development of submm receivers in which high doping density Schottky diodes are used.  相似文献   

3.
Jian-Zu Zhang   《Annals of Physics》2009,324(9):1847-1854
Noncommutative Chern–Simons’ system is non-perturbatively investigated at a full deformed level. A deformed “commutative” phase space is found by a non-canonical change between two sets of deformed variables of noncommutative space. It is explored that in the “commutative” phase space all calculations are similar to the case in commutative space. Spectra of its energy and angular momentum of the Chern–Simons’ system are obtained at the full deformed level. The noncommutative–commutative correspondence is clearly showed. Formalism for the general dynamical system is briefly presented. Some subtle points are clarified.  相似文献   

4.
Off-axial optical systems are an extended concept of co-axial optical systems, where deflection surfaces are arranged along the folded reference axis. A newly proposed aberration expression with two kinds of 4-element vectors is simple and comprehensive in its order relation for off-axial optical systems. Using these vectors and tensor algebra, it is shown that aberration expansion coefficients for an arbitrary azimuth can be calculated by transforming the coefficients of 4-element fundamental ray vectors, and the aberration contributions of each surface are in general represented not in simple sum form, but in converted sum form. The aberration contribution of cross terms that exist over the third order, can also be clearly represented using tensor coefficient representation. This paraxial and aberration analysis of off-axial optical systems is very useful in the actual design of optical systems.  相似文献   

5.
This paper describes an experimental investigation of the feasibility of using “slow” active control approaches, which “instantaneously” change liquid fuel spray properties, to suppress combustion instabilities. The objective of this control approach was to break up the feedback between the combustion process heat release and combustor pressure oscillations that drive the instability by changing the characteristics of the combustion process (e.g., the characteristic combustion time). To demonstrate the feasibility of such control, this study used a proprietary fuel injector (NanomiserTM), which can vary its fuel spray properties, to investigate the dependence of acoustics–combustion process coupling, i.e., the driving of combustion instabilities, upon the fuel spray properties. This study showed that by changing the spray characteristics it is possible to significantly damp combustion instabilities. Furthermore, using combustion zone chemiluminescence distributions, which were obtained by Abel’s deconvolution synchronized with measured acoustic data, it has been shown that the instabilities were mostly driven midway between the combustor centerline and wall, a short distance downstream from the flame holder, where the mean axial flow velocity is approximately zero in the vortex near the flame holder. The results of this study strongly suggest that a “slow” active control system that employs controllable fuel injectors could be effectively used to prevent the onset of detrimental combustion instabilities.  相似文献   

6.
We investigate modification of Kolmogorov wave turbulence in QCD calculating gluon spectra as functions of time in the presence of a low energy source which feeds in energy density in the infrared region at a time-dependent rate. Then considering the picture of saturation constraints as has been constructed in the “bottom-up” thermalization approach we revisit that picture for RHIC center-mass energy, W=130 GeV, and also extend it to LHC center-mass energy, W=5500 GeV, thus for two cases having an opportunity to calculate the equilibration time, τeq|therm, of the gluon system produced in a central heavy ion collision at mid-rapidity region. Thereby, at RHIC and LHC energies we can match the equilibration time, obtained from the late stage gluon spectrum of the modified Kolmogorov wave turbulence, onto that of the “bottom-up” thermalization and other evolutional approaches as well. In addition, from the revised “bottom-up” approach we find the gluon liberation coefficient to be on the average, ε0.81–1.06 at RHIC and ε0.50–0.56 at LHC. We also present other phenomenological estimates of τtherm which, at QCD realistic couplings, yield 0.45–0.65 fmτtherm0.97–2.72 fm at RHIC and 0.31–0.40 fmτtherm0.86–2.04 fm at LHC. We show that the second upper-bounds of τtherm in both cases are due to the late stage gluon spectrum of the original Kolmogorov wave turbulence in QCD, previously deduced with a low energy source which feeds in energy density at a constant rate. On the other hand, the lower-bounds and first upper-bounds of τtherm are due to the late stage gluon spectrum of the modified QCD wave turbulence, deduced here at the specific time-dependent rate. In the latter case, at certain conditions, taking also into account both very small and realistic couplings we give estimates: 0.65 fmτtherm1.29 fm at RHIC and 0.52 fmτtherm1.16 fm at LHC, as well as at realistic couplings we find 0.53<τtherm<0.7 fm at RHIC and 0.41<τtherm<0.65 fm at LHC.  相似文献   

7.
An optical sensor using a quartz core microcantilever was fabricated by etching clad layer from optical fiber. The temperature dependence of the resonance frequency of this sensor was measured in atmosphere and water. The temperature coefficient of the resonance frequency in water was 1.3×10−3/°C, which was about one order larger than that (2.3×10−4/°C) in atmosphere. This was caused by increase of additional mass due to temperature dependence of the viscosity of water, while, the increase of the resonance frequency in atmosphere was caused by temperature dependence of Young’s modulus of the quartz core. These results were evaluated theoretically using a “string-of-beads” model.  相似文献   

8.
In this paper we describe a three-dimensional (3D) continuous wave (CW) diffuse optical tomography (DOT) system and present 3D volumetric reconstruction studies using this DOT system with simple phantom models that simulate hand joints. The CCD-based DOT system consists of 64×64 source/detector fiber optic channels, which are arranged in four layers, forming a cylindrical fiber optic/tissue interface. Phantom experiments are used to evaluate system performance with respective to axial spatial resolution, optical contrast and target position for detection of osteoarthritis where cartilage is the primary target region of interest. These phantom studies suggest that we are able to quantitatively resolve a 2 mm thick “cartilage” and qualitatively resolve a 1 mm thick “cartilage” using our 3D reconstruction approach. Our results also show that optical contrast of 3:1–7:1 between the “disease cartilage” and normal cartilage can be quantitatively recovered. Finally, the target position along axial direction on image reconstruction is studied. All the images are obtained using our 3D finite-element-based reconstruction algorithm.  相似文献   

9.
In a recent paper, a “distance” function, , was defined which measures the distance between pure classical and quantum systems. In this work, we present a new definition of a “distance”, D, which measures the distance between either pure or impure classical and quantum states. We also compare the new distance formula with the previous formula, when the latter is applicable. To illustrate these distances, we have used 2 × 2 matrix examples and two-dimensional vectors for simplicity and clarity. Several specific examples are calculated.  相似文献   

10.
We have established a new method of aberration analysis for off-axial optical systems which are generalized concepts of co-axial optical systems, by introducing two kinds of newly defined 4-element vectors and expanding these vectors with the help of tensor algebra. In this method, since aberration properties are represented in tensor form, we can easily formulate the aberration relations between different azimuths. We can then evaluate the azimuth dependence of aberration properties in greater detail by separating them into inherent optical properties parts, which are independent of azimuths, and the paraxial ray-tracing part, which includes the expression of the evaluation azimuth.  相似文献   

11.
The main idea of the method is to eliminate physically the influence of errors of glass sample plane surfaces on the wavefront transmitting through the sample. This makes it possible to reveal the “pure” optical inhomogeneity of the material independently of the errors of flat surfaces of a glass sample made in the form of a plane-parallel plate or a wedge of the small refractive angle. A basic optical layout of the laser interferometer explaining the capabilities of the practical application of the method is presented.  相似文献   

12.
A new approach to the theory of temporal aberration for cathode lenses is given in the present paper. A definition of temporal aberration is given in which a certain initial energy of electron emission along the axial direction εz1 (0εz1ε0max) is considered. A new method to calculate the temporal aberration coefficients of cathode lenses named “direct integral method” is also presented. The “direct integral method” gives new expressions of the temporal aberration coefficients which are expressed in integral forms. The difference between “direct integral method” and “τ-variation method” is that the “τ-variation method” needs to solve the differential equations for the three of temporal geometrical aberration coefficients of second order, while the “direct integral method” only needs to carry out the integral calculation for all of these temporal aberration coefficients of second order.All of the formulae of the temporal aberration coefficients deduced from “direct integral method” and “τ-variation method” have been verified by an electrostatic concentric spherical system model, and contrasted with the analytical solutions. Results show that these two methods have got identical solutions and the solutions of temporal aberration coefficients of the first and second order are the same as with the analytical solutions. Although some forms of the results seem different, but they can be transformed into the same form. Thus, it can be concluded these two methods given by us are equivalent and correct, but the “direct integral method” is related to solve integral equations, which is more convenient for computation and could be suggested for use in practical design.  相似文献   

13.
为了提高超短脉冲激光的瞄准精度,基于自准直原理提出瞄准装置光学系统。以670 nm光纤耦合激光器为光源,设计指示光准直、扩束光学系统,准直光的不平行度达到3.2,设计焦距为350 mm,相对孔径1/5,离轴量50 mm的主激光离轴抛物面镜,其成像质量达到衍射极限,基于准直束光学系统和离轴抛物面镜,设计可适应670 nm和800 nm两种波长的20和100的瞄准和监测成像光学系统。提出一种小孔准直的安装调试方法,以指示光进行实验验证,结果表明:设计的光学系统成像光斑均匀,其物方分辨率达到4.1 m。  相似文献   

14.
A numerical model based on Berreman’s 4 × 4 matrix approach was developed and used for computational simulation of a cholesteric liquid crystal (CLC) polarizer. Explicit expressions of the 4 × 4 propagation matrices for several optical films, which constitute a CLC polarizer, were presented. Numerical simulations for optical properties of a CLC layer, a linear polarizer and a CLC polarizer were executed, and the simulated results were found to be in fairly good agreement with measured results.  相似文献   

15.
In this paper, we investigate the employment of a ternary line coding technique based on Ungerboeck's trellis-coded method in asynchronous optical CDMA systems. The ternary coding we use is predicated upon the equal-weight orthogonal (EWO) scheme. Each user transmits two mutually orthogonal signature sequences to represent “+1” and “−1”, respectively, and nothing is transmitted for “0”. The receiver employs a maximum-likelihood soft-decoder to select the path with minimum Euclidean distance as the preferred path. This trellis ternary coding scheme applies set partitioning with partially overlapping subsets to increase the free Euclidean distance, which considerably improves system performance. Furthermore, due to line coding technique, such scheme comprises sufficient clock information, and thus benefits for baseband timing extraction (i.e. clock recovery). Numerical results reveal that the proposed trellis ternary coding scheme can significantly reduce the error floor and allow more active users to be accommodated in the network.  相似文献   

16.
Low-cost vertical cavity surface emitting lasers (VCSELs) may allow the development of broadband optical networks. Designs suitable for microoptics and “jisso” (a Japanese terms which includes alignment, assembly, mounting and packaging) technologies are required for low-cost and small interconnection modules. Optical interconnections based on VCSEL arrays including both space and wavelength division multiplexing technologies are described.  相似文献   

17.
The idea of “common path” has been widely applied in optical instrument design for 30 years and even today. But the meaning of “common path” has not yet been explained clearly and sometimes confusion has been created. In this paper an “adaptive principle” is proposed and recommended on optical instrument system. It suggests that the designer not only arranges the measurement system to obtain measurement signal but also sets a channel to give prediction of noise or disturbance in real time or short term. Such a recommendation is based on the recent studies on nonlinear dynamics and atmospheric disturbance by means of experiments as well as theoretical analysis.  相似文献   

18.
This paper shows under what condition the well-knownABCD law — which can be applied to describe the propagation of one-dimensional Gaussian light through first-order optical systems (orABCD systems) — can be extended to more than one dimension. It is shown that in the two-dimensional (or higher-dimensional) case anABCD law only holds for partially coherent Gaussian light for which the matrix of second-order moments of the Wigner distribution function is proportional to a symplectic matrix. Moreover, it is shown that this is the case if we are dealing with a special kind of Gaussian Schell model light, for which the real parts of the quadratic forms that arise in the exponents of the Gaussians are described by the same real, positive-definite symmetric matrix.  相似文献   

19.
Using spatially modulated illumination (SMI) light microscopy it is possible to measure the sizes of fluorescent structures that have an extension far below the conventional optical resolution limit (“subresolution size”). Presently, the sizes are determined as the object extension along the optical axis of the SMI microscope. For this, however, “a priori” assumptions on the fluorochrome distribution (“shape”) within the examined fluorescent structure have to be made. Usually it is assumed that the fluorochrome follows a Gauss-distribution or a spherical distribution. In this report we overcome the necessity to make an assumption on the shape of the fluorochrome distribution. We introduce two new experimentally obtained parameters which allow the determination of a shape measure to describe the spatial distribution of the fluorescent dye. This becomes possible by independent measurements with different excitation wavelengths. As an example, we present shape parameter measurements on individual fluorescent microspheres with a nominal geometrical diameter (“size”) of 190 nm. In the case investigated, the experimental shape correlated well with a homogeneous fluorochrome distribution (“spherical shape”) but not with a variety of other “shapes”.  相似文献   

20.
Ye Wang  Dajian Xue  Xuanhui Lu   《Optik》2009,120(13):647-651
Based on the coupled-mode theory, the power transfer among “- - -” arranged parallel single-mode optical fibers has been investigated. The analysis shows that the distances between each two of the N fibers centers have effects on the coupling coefficient and power transfer. The solution of the coupled equations for three parallel single-mode optical fibers is given, and is studied for different initial conditions comparatively. Numerical simulations show that power transfer will be periodical during coupling among parallel single-mode optical fibers. These results can be extended to multi-parallel single-mode optical fibers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号