首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The soluble methane monooxygenase hydroxylase (MMOH) alpha-subunit contains a series of cavities that delineate the route of substrate entrance to and product egress from the buried carboxylate-bridged diiron center. The presence of discrete cavities is a major structural difference between MMOH, which can hydroxylate methane, and toluene/o-xylene monooxygenase hydroxylase (ToMOH), which cannot. To understand better the functions of the cavities and to investigate how an enzyme designed for methane hydroxylation can also accommodate larger substrates such as octane, methylcubane, and trans-1-methyl-2-phenylcyclopropane, MMOH crystals were soaked with an assortment of different alcohols and their X-ray structures were solved to 1.8-2.4 A resolution. The product analogues localize to cavities 1-3 and delineate a path of product exit and/or substrate entrance from the active site to the surface of the protein. The binding of the alcohols to a position bridging the two iron atoms in cavity 1 extends and validates previous crystallographic, spectroscopic, and computational work indicating this site to be where substrates are hydroxylated and products form. The presence of these alcohols induces perturbations in the amino acid side-chain gates linking pairs of cavities, allowing for the formation of a channel similar to one observed in ToMOH. Upon binding of 6-bromohexan-1-ol, the pi helix formed by residues 202-211 in helix E of the alpha-subunit is extended through residue 216, changing the orientations of several amino acid residues in the active site cavity. This remarkable secondary structure rearrangement in the four-helix bundle has several mechanistic implications for substrate accommodation and the function of the effector protein, MMOB.  相似文献   

2.
Lovell T  Li J  Noodleman L 《Inorganic chemistry》2001,40(20):5251-5266
The conflicting protein crystallography data for the oxidized form (MMOH(ox)) of methane monooxygenase present a dilemma regarding the identity of the solvent-derived bridging ligands within the active site: do they comprise a diiron unit bridged by 1H2O and 1OH(-) as postulated for Methylococcus capsulatus or 2OH(-) ligands as suggested for Methylosinus trichosporium? Using models derived explicitly from the M. capsulatus and M. trichosporium protein data, spin-unrestricted density functional methods have been used to study two structurally characterized forms of the hydroxylase component of methane monooxygenase. The active site geometries of the oxidized (MMOH(ox)) and two-electron-reduced (MMOH(red)) states have been geometry optimized using several quantum cluster models which take into account the antiferromagnetic (AF) and ferromagnetic (F) coupling of electron spins. Trends in cluster geometries, energetics, and Heisenberg J values have been evaluated. For the majority of models, calculated geometries are in good agreement with the X-ray analyses and appear relatively insensitive to the F or AF alignment of electron spins on adjacent Fe sites. Discrepancies between calculation and experiment appear in the orientation of the coordinated His and Glu amino acid side chains for both MMOH(ox) and MMOH(red) and also in unexpected intramolecular proton transfer in the MMOH(ox) cluster models. There is additional dispersion between (and among) calculated and experimental Fe(3+)-OH(-) distances with relevance to the correct protonation state of the solvent-derived ligands. In an accompanying paper (Lovell, T.; Li, J.; Noodleman, L. Inorg. Chem. 2001, 40, 5267), a comparison of the related energetics of the active site models examined herein is further evaluated in the full protein and solvent environment.  相似文献   

3.
A [Fe-S-Fe] subunit with a single sulfide bridging two low-coordinate iron ions is the supposed active site of the iron-molybdenum co-factor (FeMoco) of nitrogenase. Here we report a dinuclear monosulfido bridged diiron(II) complex with a similar complex geometry that can be oxidized stepwise to diiron(II/III) and diiron(III/III) complexes while retaining the [Fe-S-Fe] core. The series of complexes has been characterized crystallographically, and electronic structures have been studied using, inter alia, 57Fe Mössbauer spectroscopy and SQUID magnetometry. Further, cleavage of the [Fe-S-Fe] unit by CS2 is presented.  相似文献   

4.
Optimized structures for the redox species of the diiron active site in [Fe]-hydrogenase as observed by FTIR and for species in the catalytic cycle for the reversible H(2) oxidation have been determined by density-functional calculations on the active site model, [(L)(CO)(CN)Fe(mu-PDT)(mu-CO)Fe(CO)(CN)(L')](q)(L = H(2)O, CO, H(2), H(-); PDT = SCH(2)CH(2)CH(2)S, L' = CH(3)S(-), CH(3)SH; q = 0, 1-, 2-, 3-). Analytical DFT frequencies on model complexes (mu-PDT)Fe(2)(CO)(6) and [(mu-PDT)Fe(2)(CO)(4)(CN)(2)](2)(-) are used to calibrate the calculated CN(-) and CO frequencies against the measured FTIR bands in these model compounds. By comparing the predicted CN(-) and CO frequencies from DFT frequency calculations on the active site model with the observed bands of D. vulgaris [Fe]-hydrogenase under various conditions, the oxidation states and structures for the diiron active site are proposed. The fully oxidized, EPR-silent form is an Fe(II)-Fe(II) species. Coordination of H(2)O to the empty site in the enzyme's diiron active center results in an oxidized inactive form (H(2)O)Fe(II)-Fe(II). The calculations show that reduction of this inactive form releases the H(2)O to provide an open coordination site for H(2). The partially oxidized active state, which has an S = (1)/(2) EPR signal, is an Fe(I)-Fe(II) species. Fe(I)-Fe(I) species with and without bridging CO account for the fully reduced, EPR-silent state. For this fully reduced state, the species without the bridging CO is slightly more stable than the structure with the bridging CO. The correlation coefficient between the predicted CN(-) and CO frequencies for the proposed model species and the measured CN(-) and CO frequencies in the enzyme is 0.964. The proposed species are also consistent with the EPR, ENDOR, and M?ssbauer spectroscopies for the enzyme states. Our results preclude the presence of Fe(III)-Fe(II) or Fe(III)-Fe(III) states among those observed by FTIR. A proposed reaction mechanism (catalytic cycle) based on the DFT calculations shows that heterolytic cleavage of H(2) can occur from (eta(2)-H(2))Fe(II)-Fe(II) via a proton transfer to "spectator" ligands. Proton transfer to a CN(-) ligand is thermodynamically favored but kinetically unfavorable over proton transfer to the bridging S of the PDT. Proton migration from a metal hydride to a base (S, CN, or basic protein site) results in a two-electron reduction at the metals and explains in part the active site's dimetal requirement and ligand framework which supports low-oxidation-state metals. The calculations also suggest that species with a protonated Fe-Fe bond could be involved if the protein could accommodate such species.  相似文献   

5.
The binding of ethanol and 1,1,1-trifluoroethanol (TFE) to both the H(mv) and H(ox) forms of soluble methane monooxygenase (sMMO) in solution has been studied by Q-band (35 GHz) CW and pulsed ENDOR spectroscopy of (1)H, (2)H and (19)F nuclei of exogenous ligands. As part of this investigation we introduce (19)F, in this case from bound TFE, as a new probe for the binding of small molecules to a metalloenzyme active site. The H(mv) form was prepared in solution by chemical reduction of H(ox). For study of H(ox) itself, frozen solutions were subjected to gamma-irradiation in the frozen solution state at 77 K, which affords an EPR-visible mixed-valent diiron center, denoted (H(ox))(mv), held in the geometry of the diiron(III) state. The (19)F and (2)H ENDOR spectra of bound TFE together with (1,2)H ENDOR spectra of bound ethanol indicate that the alcohols bind close to the Fe(II) ion of the mixed-valence cluster in H(mv) and in a bridging or semi-bridging fashion to H(ox). DMSO does not affect the binding of either of the ethanols or of methanol to H(ox), nor of ethanol or methanol to H(mv). It does, however, displace TFE from the diiron site in H(mv). These results provide the first evidence that crystal structures of sMMO hydroxylase into which product alcohols were introduced by diffusion represent the structures in solution.  相似文献   

6.
Lovell T  Li J  Noodleman L 《Inorganic chemistry》2001,40(20):5267-5278
Using the density functional optimized active site geometries obtained in the accompanying paper (Lovell, T.; Li, J.; Noodleman, L. Inorg. Chem. 2001, 40, 5251), a combined density functional and electrostatics approach has been applied to further address attendant uncertainties in the protonation states of the bridging ligands for MMOH(ox). The acidities (pK(a)s) associated with the bridging H(2)O ligand in Methylococcus capsulatus and corresponding energetics of each active site cluster interacting with the protein environment have been evaluated. The pK(a) calculations in combination with the results of the gas phase DFT studies allow the active site cluster in Methylosinustrichosporium to be best described as a diiron unit bridged by 2OH(-) ligands having an overall neutral net cluster charge. The presence of the exogenous acetate in M. capsulatus reveals a diiron unit bridged by 1OH(-) and 1H2O which asymmetrically shares its proton with a second-shell acetate in a very short strong AcO..H...OH hydrogen bond. For all MMOH(ox) and MMOH(red) active sites examined, significant Fe-ligand covalency is evident from the ESP atom charges, consistent with very strong ligand --> metal charge transfer from the muOH(-) and mu-carboxylato bridging ligands. The magnitude of electrostatic interaction of the individual protein residues in the active domain with the active site has been assessed via an energy decomposition scheme. Important second-shell residues are highlighted for the next level of quantum mechanics based calculations or alternatively for site-directed mutagenesis studies. Finally, from the known structural and spectroscopic evidence and the DFT studies, a possible mechanism is suggested for the conversion of MMOH(ox) into MMOH(red) that involves a combination of protein residues and solvent-derived ligands from the second coordination sphere.  相似文献   

7.
Rubrerythrin (Rbr) is a 44-kDa homodimeric protein, found in many air-sensitive bacteria and archaea, which contains a unique combination of a rubredoxin-like [Fe(SCys)(4)] site and a non-sulfur, oxo/dicarboxylato-bridged diiron site. The diiron site structure resembles those found in O2-activating diiron enzymes. However, Rbr instead appears to function as a hydrogen peroxide reductase (peroxidase). The diferrous site in all-ferrous Rbr (Rbr(red)) shows a much greater reactivity with H2O2 than does the diferric site in all-ferric Rbr (Rbr(ox)), but only the latter structure has been reported. Here we report the X-ray crystal structures of the recombinant Rbr(red) from the sulfate reducing bacterium, Desulfovibrio vulgaris, as well as its azide adduct (Rbr(red)N3). We have also redetermined the structure of Rbr(ox) to a higher resolution than previously reported. The structural differences between Rbr(ox) and Rbr(red) are localized entirely at the diiron site. The most striking structural change upon reduction of the diferric to the diferrous site of Rbr is a 1.8-A movement of one iron away from a unique glutamate carboxylate ligand and toward a trans-disposed histidine side chain, which replaces the glutamate as a ligand. This movement increases the inter-iron distance from 3.3 to 4 A. Rbr(red)N(3) shows this same iron movement and His-->Glu ligand replacement relative to Rbr(ox), and, in addition, an azide coordinated to the diiron site in a cis mu-1,3 fashion, replacing two solvent ligands in Rbr(red). Relative to those in O2-activating enzymes, the bridging carboxylate ligation of the Rbr diiron site is less flexible upon diferric/diferrous interconversion. The diferrous site is also much more rigid, symmetrical, and solvent-exposed than those in O2-activating enzymes. On the basis of these unique structural features, a mechanism is proposed for facile reduction of hydrogen peroxide by Rbr involving a cis mu-eta(2) H2O2 diferrous intermediate.  相似文献   

8.
The oxidation of methane to methanol is performed at carboxylate-bridged dinuclear iron centers in the soluble methane monooxygenase hydroxylase (MMOH). Previous structural studies of MMOH, and the related R2 subunit of ribonucleotide reductase, have demonstrated the occurrence of carboxylate shifts involving glutamate residues that ligate the catalytic iron atoms. These shifts are thought to have important mechanistic implications. Recent kinetic and theoretical studies have also emphasized the importance of hydrogen bonding and pH effects at the active site. We report here crystal structures of MMOH from Methylococcus capsulatus (Bath) in the diiron(II), diiron(III), and mixed-valent Fe(II)Fe(III) oxidation states, and at pH values of 6.2, 7.0, and 8.5. These structures were investigated in an effort to delineate the range of possible motions at the MMOH active site and to identify hydrogen-bonding interactions that may be important in understanding catalysis by the enzyme. Our results present the first view of the diiron center in the mixed-valent state, and they indicate an increased lability for ferrous ions in the enzyme. Alternate conformations of Asn214 near the active site according to redox state and a distortion in one of the alpha-helices adjacent to the metal center in the diiron(II) state have also been identified. These changes alter the surface of the protein in the vicinity of the catalytic core and may have implications for small-molecule accessibility to the active site and for protein component interactions in the methane monooxygenase system. Collectively, these results help to explain previous spectroscopic observations and provide new insight into catalysis by the enzyme.  相似文献   

9.
Self-assembling coordination polymers based on Pd II and Cu II metal ions were prepared from complexation of a bent-shaped bispyridine ligand and a corresponding transition metal. These coordination polymers were observed to self-assemble into supramolecular structures that differ significantly depending on the coordination geometry of the metal center. The polymer based on Pd II self-assembles into a layer structure formed by bridging bispyridine ligands connected in a trans-position of the square-planar coordination geometry of metal center. In contrast, the polymer based on Cu II adopts a double-helical conformation with regular grooves, driven by interstranded, copper-chloride dimeric interaction. The double-stranded helical organization is further confirmed by structure optimization from density functional theory with aromatic framework, showing that the optimized double-helical structure is energetically favorable and consistent with the experimental results. These results demonstrate that weak metal-ligand bridging interactions can provide a useful strategy to construct stable double-stranded helical nanotubes.  相似文献   

10.
Umecyanin (UMC) is a type 1 copper-containing protein which originates from horseradish roots and belongs to the stellacyanin subclass of the phytocyanins, a ubiquitous family of plant cupredoxins. The crystal structures of Cu(II) and Cu(I) UMC have been determined at 1.9 and 1.8 A, respectively. The protein has an overall fold similar to those of other phytocyanins. At the active site the cupric ion is coordinated by the N(delta1) atoms of His44 and His90, the S(gamma) of Cys85, and the O(epsilon)(1) of Gln95 in a distorted tetrahedral geometry. Both His ligands are solvent exposed and are surrounded by nonpolar and polar side chains on the protein surface. Thus, UMC does not possess a distinct hydrophobic patch close to the active site in contrast to almost all other cupredoxins. UMC has a large surface acidic patch situated approximately 10-30 A from the active site. The structure of Cu(I) UMC is the first determined for a reduced phytocyanin and demonstrates that the coordination environment of the cuprous ion is more trigonal pyramidal. This subtle change in geometry is primarily due to the Cu-N(delta1)(His44) and Cu-O(epsilon1)(Gln95) bond lengths increasing from 2.0 and 2.3 A in Cu(II) UMC to 2.2 and 2.5 A, respectively, in the reduced form, as a consequence of slight rotations of the His44 and Gln95 side chains. The limited structural changes upon redox interconversion at the active site of this stellacyanin are analogous to those observed in a typical type 1 copper site with an axial Met ligand and along with its surface features suggest a role for UMC in interprotein electron transfer.  相似文献   

11.
X-ray absorption and resonance Raman spectroscopies show that CmlA, the β-hydroxylase of the chloramphenicol biosynthetic pathway, contains a (μ-oxo)-(μ-1,3-carboxylato)diiron(III) cluster with 6-coordinate iron centers and 3 - 4 His ligands. This active site is found within a unique β-lactamase fold and is distinct from those of soluble methane monooxygenase and related enzymes that utilize a highly conserved diiron cluster with a 2-His-4-carboxylate ligand set within a 4-helix bundle motif. These structural differences may have an impact on the nature of the activated oxygen species of the reaction cycle.  相似文献   

12.
The construction of Cu(II)-containing supramolecular chains is achieved by combining suitable anionic ligands (for controlling the coordination geometry and for creating a neutral building block) with four new bifunctional ligands containing a metal-coordinating pyridyl site and a self-complementary hydrogen-bonding moiety. Seven crystal structures are presented and in each case, the copper(II) complex displays a "paddlewheel" arrangement, with four carboxylate ligands occupying the equatorial sites, leaving room for the bifunctional ligand to coordinate in the axial positions. The supramolecular chemistry, which organizes the coordination-complexes into the desired infinite 1-D chains, is driven by a combination of N-H...N and N-H...O hydrogen-bonds in five of the seven structures.  相似文献   

13.
Iron-only hydrogenases are high-efficiency biocatalysts for the synthesis and cleavage of molecular hydrogen. Their active site is a diiron center, which carries CO and CN ligands. Remarkably, the two iron atoms likely are connected by a non-protein azadithiolate (adt = S-CH2-NH-CH2-S). To dwell on the role of the adt in H2 catalysis, a specific biomimetic diiron compound, 1 = [Fe2(mu-adt-CH2-Ph)(CO)4(PMe3)2], with unprecedented positive reduction potential, has been synthesized and crystallized previously. It comprises two protonation sites, the N-benzyl-adt nitrogen that can hold a proton (H) and the Fe-Fe bond that will formally carry a hydride (Hy). We investigated changes in the solution structure of 1 in its four different protonation states (1', [1H]+, [1HHy]2+, and [1Hy]+) by X-ray absorption spectroscopy at the iron K-edge. EXAFS reveals that already protonation at the adt nitrogen atom causes a change of the ligand geometry involving a significant lengthening of the Fe-Fe distance and CO and PMe3 repositioning, respectively, thereby facilitating the subsequent binding of a bridging hydride. Hydride binding clearly is discernible in the XANES spectra of [1HHy]2+ and [1Hy]+. DFT calculations are in excellent agreement with the experimentally derived structural parameters and provide complementary insights into the electronic structure of the four protonation states. In the iron-only hydrogenases, protonation of the putative adt ligand may cause the bridging CO to move to a terminal position, thereby preparing the active site for hydride binding en route to H2 formation.  相似文献   

14.
De novo metalloprotein design is a remarkable approach to shape protein scaffolds toward specific functions. Here, we report the design and characterization of Due Rame 1 (DR1), a de novo designed protein housing a di-copper site and mimicking the Type 3 (T3) copper-containing polyphenol oxidases (PPOs). To achieve this goal, we hierarchically designed the first and the second di-metal coordination spheres to engineer the di-copper site into a simple four-helix bundle scaffold. Spectroscopic, thermodynamic, and functional characterization revealed that DR1 recapitulates the T3 copper site, supporting different copper redox states, and being active in the O2-dependent oxidation of catechols to o-quinones. Careful design of the residues lining the substrate access site endows DR1 with substrate recognition, as revealed by Hammet analysis and computational studies on substituted catechols. This study represents a premier example in the construction of a functional T3 copper site into a designed four-helix bundle protein.  相似文献   

15.
A series of coordination compounds has been prepared comprising manganese, iron, nickel, and zinc bound by a hexaanionic cryptand where carboxamides are anionic N-donors. The metal complexes have been investigated by X-ray crystallography, and possess metal centers in trigonal monopyramidal geometries with intermetallic distances spanning d(Mn,avg) = 6.080 ? to d(Ni,avg) = 6.495 ?. All complexes featuring trigonal monopyramidal metal(II) ions crystallize in Cc, and feature extended three-dimensional networks composed of cryptate anions linked by bridging potassium countercations. We also report the first solid state structure of the free cryptand ligand, which features no guest in its cavity and which possesses an extended hydrogen-bonding network. SQuID magnetometry data of the metal complexes reveal weak antiferromagnetic coupling of the metal centers. Only the diiron(II) complex exhibits reversible electrochemistry, and correspondingly, its chemical oxidation yields a powder formulated as the diiron(III) congener. The insertion of cyanide into the intermetallic cleft of the diiron(II) complex has been achieved, and comparisons of its solid state structure to the recently reported dicobalt(II) analogue are made. The antiferromagnetic coupling between the diiron(II) and the dicobalt(II) centers when bridged by cyanide does not increase significantly relative to the unbridged congeners. A one-site model satisfactorily fits Mo?ssbauer spectra of unbridged diiron(II) and diiron(III) complexes whereas a two site fit was needed to model the iron(II) centers that are bridged by cyanide.  相似文献   

16.
The periplasmic lysine-, arginine-, ornithine-binding protein (LAOBP) traps its ligands by a large hinge bending movement between two globular domains. The overall geometry of the binding site remains largely unchanged between the open (unliganded) and closed (liganded) forms, with only a small number of residues exhibiting limited movement of their side chains. However, in the case of the ornithine-bound structure, the backbone peptide bond between Asp11 and Thr12 undergoes a large rotation. Molecular dynamics simulations have been used to investigate the origin and mechanism of this backbone movement. Simulations allowing flexibility of a limited region and of the whole binding site, with and without bound ligands, suggest that this conformational change is induced by the binding of ornithine, leading to the stabilisation of an energetically favourable alternative conformation.  相似文献   

17.
The R2 subunit of Escherichia coli ribonucleotide reductase contains a dinuclear iron center that generates a catalytically essential stable tyrosyl radical by one electron oxidation of a nearby tyrosine residue. After acquisition of Fe(II) ions by the apo protein, the resulting diiron(II) center reacts with O(2) to initiate formation of the radical. Knowledge of the structure of the reactant diiron(II) form of R2 is a prerequisite for a detailed understanding of the O(2) activation mechanism. Whereas kinetic and spectroscopic studies of the reaction have generally been conducted at pH 7.6 with reactant produced by the addition of Fe(II) ions to the apo protein, the available crystal structures of diferrous R2 have been obtained by chemical or photoreduction of the oxidized diiron(III) protein at pH 5-6. To address this discrepancy, we have generated the diiron(II) states of wildtype R2 (R2-wt), R2-D84E, and R2-D84E/W48F by infusion of Fe(II) ions into crystals of the apo proteins at neutral pH. The structures of diferrous R2-wt and R2-D48E determined from these crystals reveal diiron(II) centers with active site geometries that differ significantly from those observed in either chemically or photoreduced crystals. Structures of R2-wt and R2-D48E/W48F determined at both neutral and low pH are very similar, suggesting that the differences are not due solely to pH effects. The structures of these "ferrous soaked" forms are more consistent with circular dichroism (CD) and magnetic circular dichroism (MCD) spectroscopic data and provide alternate starting points for consideration of possible O(2) activation mechanisms.  相似文献   

18.
Using broken-symmetry density functional theory and spin-projection methods, we have examined the electronic structure and properties of a large mixed-valent Fe(III)-Fe(IV) diiron system that displays two bidentate carboxylates and a single mu-oxo moiety as bridging ligands. Two carboxylates and a single oxygen species have long been implicated as core elements of the elusive intermediate X in ribonucleotide reductase. Spectroscopic studies of X have also identified the presence of an additional terminal or bridging oxygen-based ligand. Introduction of a second oxygen and protonated variants thereof in the core of our structural model is favored as a bridging hydroxide based on the lowest energy structure. M?ssbauer measurements indicate clearly that the two iron sites of X are distinct and that there is significant electron delocalization onto the oxygen-based ligands. For several examined spin states of our model cluster, M?ssbauer parameters from density functional calculations are neither able to differentiate between the iron sites nor reproduce the strong spin delocalization onto the oxygen-based ligands observed experimentally. The combined comparison of the calculated geometries, spin states, spin densities, and M?ssbauer properties for our model clusters with available experimental data for X implies that intermediate X is significantly different from the diiron structural models examined herein.  相似文献   

19.
Structural chemistry of a green fluorescent protein Zn biosensor   总被引:5,自引:0,他引:5  
We designed a green fluorescent protein mutant (BFPms1) that preferentially binds Zn(II) (enhancing fluorescence intensity) and Cu(II) (quenching fluorescence) directly to a chromophore ligand that resembles a dipyrrole unit of a porphyrin. Crystallographic structure determination of apo, Zn(II)-bound, and Cu(II)-bound BFPms1 to better than 1.5 A resolution allowed us to refine metal centers without geometric restraints, to calculate experimental standard uncertainty errors for bond lengths and angles, and to model thermal displacement parameters anisotropically. The BFPms1 Zn(II) site (KD = 50 muM) displays distorted trigonal bipyrimidal geometry, with Zn(II) binding to Glu222, to a water molecule, and tridentate to the chromophore ligand. In contrast, the BFPms1 Cu(II) site (KD = 24 muM) exhibits square planar geometry similar to metalated porphyrins, with Cu(II) binding to the chromophore chelate and Glu222. The apo structure reveals a large electropositive region near the designed metal insertion channel, suggesting a basis for the measured metal cation binding kinetics. The preorganized tridentate ligand is accommodated in both coordination geometries by a 0.4 A difference between the Zn and Cu positions and by distinct rearrangements of Glu222. The highly accurate metal ligand bond lengths reveal different protonation states for the same oxygen bound to Zn vs Cu, with implications for the observed metal ion specificity. Crystallographic anisotropic thermal factor analysis validates metal ion rigidification of the chromophore in enhancement of fluorescence intensity upon Zn(II) binding. Thus, our high-resolution structures reveal how structure-based design has effectively linked selective metal binding to changes in fluorescent properties. Furthermore, this protein Zn(II) biosensor provides a prototype suitable for further optimization by directed evolution to generate metalloprotein variants with desirable physical or biochemical properties.  相似文献   

20.
The synthesis, molecular structures, and spectroscopic properties of a series of valence-delocalized diiron(II,III) complexes are described. One-electron oxidation of diiron(II) tetracarboxylate complexes afforded the compounds [Fe(2)(mu-O(2)CAr(Tol))(4)L(2)]X, where L = 4-(t)BuC(5)H(4)N (1b), C(5)H(5)N (2b), and THF (3b); X = PF(6)(-) (1b and 3b) and OTf(-) (2b). In 1b-3b, four mu-1,3 carboxylate ligands span relatively short Fe...Fe distances of 2.6633(11)-2.713(3) A. Intense (epsilon = 2700-3200 M(-1) cm(-1)) intervalence charge transfer bands were observed at 620-670 nm. EPR spectroscopy confirmed the S = (9)/(2) ground spin state of 1b-3b, the valence-delocalized nature of which was probed by X-ray absorption spectroscopy. The electron delocalization between paramagnetic metal centers is described by double exchange, which, for the first time, is observed in diiron clusters having no single-atom bridging ligand(s).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号