首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 422 毫秒
1.
A tunable and switchable single-longitudinal-mode (SLM) dual-wavelength fiber laser incorporating a reconfigurable dual-pass Mach-Zehnder interferometer (MZI) filter was proposed and demonstrated, which can be applied in microwave generation. By incorporating a high extinction ratio (ER) dual-pass MZI into an erbium-doped fiber ring cavity, SLM dual-wavelength lasing can be achieved even using a MZI with relatively little free spectrum range (FSR), and by beating the two wavelengths at a photodetector, a 9.76 GHz microwave signal with a 3-dB bandwidth of less than 10 kHz is obtained. Moreover, by direct linking the two outputs of the MZI, the high ER dual-pass MZI is easily reconfigured as a half FSR dual-pass MZI. Using this structure, switchable SLM dual-wavelength lasing can be conveniently realized.  相似文献   

2.
We demonstrate a multi-wavelength semiconductor optical amplifier (SOA) fiber ring laser with a dual-pass Mach-Zehnder interferometer (MZI) filter. Two SOAs with different gain spectra provide sufficient gain and a wider gain spectrum to facilitate multi-wavelength lasing. The dual-pass MZI, configured by adding an optical isolator to the two outputs of the conventional MZI, serves as comb filter for multi-wavelength operation, and its extinction ratio can be enhanced to twofold as that of the conventional MZI in the same parameters. To investigate the influences of a dual-pass MZI filter and a conventional MZI filter on multi-wavelength operation, two different cavity configurations are presented and compared, including a single-SOA ring cavity and a double-SOA ring cavity. Stable simultaneous operation at 82 wavelengths, with a wavelength spacing of 40 GHz and a power deviation of 5 dB, and with a minimum optical signal-to-noise ratio (OSNR) of 28 dB, is observed from the double-SOA ring cavity using a dual-pass MZI filter.  相似文献   

3.
We propose a Mach-Zehnder interferometer (MZI) based on coupled dielectric pillars. It is composed of single-row pillar coupled waveguide modulating arms and three-row pillar waveguide 3 dB couplers. The slow light property and transmission loss of the single-row pillar modulating arm are optimized by the plane wave expansion method. A short 3dB coupler is designed based on the modes transformation in three-row pillar waveguide. Finite difference time domain simulations prove the validity of this MZI and show that it has low insertion loss of 1.1 dB and high extinction ratio of 〉 12 dB.  相似文献   

4.
An efficient erbium–ytterbium-doped fiber amplifier (EYDFA) is demonstrated by forward and backward pumping a 3 m erbium/ytterbium co-doped fibers (EYDF) in single- and double-pass configurations using a 20 mW pump. At the input signal wavelength of 1536 nm, the forward- and backward-pumped double-pass amplifiers achieved a maximum low-signal gain of 37.2 and 28.6 dB and a corresponding noise figure of 5.4 and 10.8 dB, respectively. Whereas, the forward- and backward-pumped single-pass amplifiers (at the same wavelength) achieved a maximum low-signal gain of 20.0 and 22.2 dB and a corresponding noise figure of 4.6 and 10.3 dB, respectively. The double-pass design offers an economical solution to high-efficiency and high-gain optical amplifiers.  相似文献   

5.
6.
C.H. Yeh  C.W. Chow  Y.F. Wu  S.S. Lu 《Optics Communications》2012,285(21-22):4470-4473
A new and energy-efficient tie-type architecture for stable and wavelength-tunable semiconductor optical amplifier (SOA)-based fiber ring laser is proposed and experimentally investigated. Here, the tie-type laser configuration is constructed by two Sagnac fiber loops. The proposed laser also can extend the lasing wavelength to longer wavelength (L-band) even only the C-band SOA is used. The proposed tie-type architecture has >5 dB higher output optical power at bias current of 80 mA when compared with the single ring SOA-based fiber laser. In this measurement, the output power, wavelength tuning range, side-mode suppression ratio (SMSR) and output stability of proposed fiber laser have also been analyzed and discussed.  相似文献   

7.
Double-pass short-wavelength band erbium-doped fiber amplifier (S-band EDFA) with enhanced gain and noise figure characteristics is demonstrated. It uses a broadband fiber Bragg grating (FBG) operating in conventional-band (C-band) region to reduce the C-band amplified spontaneous emission (ASE) in the amplifier system and thus increases the population inversion in the S-band region. The small signal gain is increased by about 2.7 dB for 1500 nm signal at pump power of 103 mW, compared with that of the conventional double-pass amplifier without the FBG. The corresponding noise figure is also improved by 0.5 dB.  相似文献   

8.
Microfiber Mach Zehnder Interferometer (MMZI) is demonstrated by micromanipulating an optical microfiber drawn from a single mode fiber (SMF) using a flame brushing technique. The MMZI shows good interference fringes with an extinction ratio of 13 dB and a free spectral range (FSR) of 0.52 nm at 1530 nm. The MMZI is then embedded in a polymer with the refractive index of 1.36 to increase the stability and robustnes of the device. It is found that the transmission spectrum of the packaged MMZI is changed by the polymer, which increases the FSR to 0.83 nm. The degradation in transmission loss and extinction ratio are attributed to the disturbance at the coupling area during the packaging. Compared with waveguide based mach zehnder interferometer, the proposed MMZI is favoured due to easy fabrication, compact size, and easy integration with the fiber system.  相似文献   

9.
We experimentally investigate the single-pumped L-band (1570–1610 nm) erbium-doped fiber amplified spontaneous emission (ASE) source in four configurations with single-pass forward, single-pass backward, double-pass forward (DPF), and double-pass backward structures. The characteristics are examined and compared in terms of the output power, mean wavelength, spectral linewidth, and pumping conversion efficiency. Among them, only DPF configuration is satisfied, and other configurations are intrinsically hard to be an L-band ASE source for applications. Such results are significantly different as compared with their corresponding C-band counterparts.  相似文献   

10.
An experiment on gain enhancement in the long wavelength band erbium-doped fiber amplifier (L-band EDFA) is demonstrated using dual forward pumping scheme in double-pass system. Compared to a single-stage single-pass scheme, the small signal gain for 1580 nm signal can be improved by 13.5 dB. However, a noise figure penalty of 2.9 dB was obtained due to the backward C-band ASE from second stage and the already amplified signal from the first pass that extracting energy from the forward C-band ASE. The maximum gain improvement of 13.7 dB was obtained at a signal wavelength of 1588 nm while signal and total pump powers were fixed at -30 dBm and 92 mW, respectively.  相似文献   

11.
分析了半导体光放大器中双折射对基于半导体光放大器的干涉型器件性能的影响,对基于半导体光放大器的马赫—曾德尔型波长转换器的理论计算表明,当半导体光放大器有双折射存在时,消光比不仅要比无双折射时的要低,而且还随着探测光的偏振态而改变,变化幅度可大于10dB。提出了减小双折射对干涉型器件影响的方案,并且分析了实现对增益和对相位变化同时具有偏振不灵敏的半导体光放大器的可能性。  相似文献   

12.
A short wavelength band brillouin–erbium fiber laser (S-band BEFL) with enhanced characteristics is demonstrated using an additional erbium-doped fiber amplifier (EDFA) in the sub-loop of the laser system. Compared with the conventional BEFL without the additional EDFA, the enhanced BEFL has improved the number of channels as well as the flatness of the brillouin Stoke's peak power. By incorporating a double-pass EDFA, a stable output laser comb up to 8 channels was obtained at 1503 nm wavelength region with peak power variation for the first three Stokes is reduced from 30.9 to 5.4 dB. The incorporation of additional EDFA also increases the tuning range of the BEFL, which the maximum tuning range of 1.8 nm was obtained with the single-pass scheme. The S-band BEFL has constant spacing of 0.09 nm or 11 GHz, which has a potential application in dense wavelength division multiplexed system.  相似文献   

13.
Changjian Xie 《中国物理 B》2021,30(12):120703-120703
A 32-channel wavelength division multiplexer with 100 GHz spacing is designed and fabricated by interleaving two silicon arrayed waveguide gratings (AWGs). It has a parallel structure consisting of two silicon 16-channel AWGs with 200 GHz spacing and a Mach-Zehnder interferometer (MZI) with 200 GHz free spectral range. The 16 channels of one silicon AWG are interleaved with those of the other AWG in spectrum, but with an identical spacing of 200 GHz. For the composed wavelength division multiplexer, the experiment results reveal 32 wavelength channels in C-band, a wavelength spacing of 100 GHz, and a channel crosstalk lower than -15 dB.  相似文献   

14.
高消光比双通马赫-曾德尔干涉仪梳状滤波器   总被引:4,自引:0,他引:4  
提出了一种新颖结构的高消光比双通马赫-曾德尔干涉仪梳状滤波器,将常规单通马赫-曾德尔干涉仪的两个输出端与光隔离器连接,构成一个双通马赫-曾德尔干涉仪梳妆滤波器,对滤波器的输出特性进行了理论分析和实验研究。数值模拟表明,与常规的单通马赫-曾德尔干涉仪相比,在相同参量的情况下该双通马赫-曾德尔干涉仪梳妆滤器的消光比得到了大大改善,消光比的提高取决于干涉仪的臂长差,当干涉仪的臂长差为0.7366mm时,消光比提高了20dB。实验结果表明,双通马赫-曾德尔干涉仪梳妆滤器的消光比为25.8dB,消光比提高了13dB。  相似文献   

15.
The double-pass erbium-doped zirconia fiber amplifier (EDZFA) is proposed and demonstrated to provide a wide-band amplification as well as flat-gain operation in both the C- and L-band regions using only a single-gain medium. The proposed amplifier utilizes an erbium-doped zirconia fiber (EDZF) with erbium ion concentration of 2800 ppm as a gain medium. The medium is fabricated in a ternary glass host, zirconia-yttria-aluminum codoped silica fiber through solution doping technique along with modified chemical vapor deposition (MCVD). Compared to a single-pass operation, the double-pass EDZFA shows a better gain performance. At input signal power of 0 dBm and the optimum EDZF length of 2 m, a flat gain of around 16 dB is achieved by the proposed double-pass amplifier with gain variation of approximately 2.5 dB throughout the wavelength range from 1530 to 1590 nm. However, the noise figure of the double-pass amplifier is slightly higher than that of the single-pass due to inefficient population inversion at the input part of the amplifier.  相似文献   

16.
We propose and demonstrate an all-fiber high Q Mach-Zehnder interferometer (MZI)-coupled microknot resonator (MZKR) structure using optical microfibers drawn from silica fibers. The experimental results show that this microfiber-based structure achieved a high Q factor of ∼ 15,000 and good interference fringes with extinction ratio of up to ∼ 15 dB. By optimizing the loop-length of the microfiber knot and the optical path-difference of the MZI, the desired MZKR with higher Q factor and better extinction ratio could be obtained. A series of integrated all-fiber optical devices could be realized based on such a MZKR structure due to its outstanding advantages of easy fabrication, great flexibility, low cost, low loss, etc.  相似文献   

17.
We demonstrate experimentally >3 dB extinction ratio improvement at the output of SOA-based delayed-interference signal converter (DISC) using optical off-centered filtering. Through careful modeling of the carrier and the phase dynamics, we explain in detail the origin of sub-pulses in the wavelength converted output, with an emphasis on the time-resolved frequency chirping of the output signal. Through our simulations we conclude that the sub-pulses and the main-pulses are oppositely chirped, which is also verified experimentally by analyzing the output with a chirp form analyzer. We propose and demonstrate an optical off-center filtering technique which effectively suppresses these sub-pulses. The effects of filter detuning and phase bias adjustment in the delayed-interferometer are experimentally characterized and optimized, leading to a >3 dB extinction ratio enhancement of the output signal.  相似文献   

18.
This paper presents an efficient pumping scheme for L-band erbium-doped fiber (EDFA) amplifier to reach high gain and low noise performance in a double-pass configuration. The main L-band amplifier is composed of two sections of EDFs. A 980 nm and a 1480 nm pump lasers are used to pump the first section of EDF bi-directionally. The generated backward C-band amplified spontaneous emission noise from this EDF is used to pump a subsequent un-pumped section of EDF. In the double-pass scheme, a narrow-band fiber Bragg grating at each channel wavelength is used to back-reflect the L-band signal to make it amplified twice by the pair of EDFs. Compared with its conventional counterpart, this new double-pass configuration provides a lower noise figure and a higher gain. The pump conversion efficiency can be improved by more than 50% in a 3-channel demonstration by using the proposed configuration.  相似文献   

19.
A novel photonic scheme of microwave signal frequency measurement with adjustable measurement range and resolution is proposed and experimentally demonstrated. The proposed scheme is based on simultaneous optical phase modulation and intensity modulation with interferometric detection. A low-pass frequency response is achieved by a Mach–Zehnder interferometer (MZI) while a bandpass frequency response is produced by a polarizer placed on the back instead of in front of the MZI. The microwave frequency can be estimated by the measured amplitude comparison function (ACF) obtained from the ratio of the two frequency responses. This scheme is simple, cost-effective as it requires no extra laser sources or modulators in the basic analog modulation link. The measurement errors as shown in experimental results can be kept in 0.1 GHz over a frequency range of 0.1–8.5 GHz.  相似文献   

20.
Tapered fiber based ring resonators are fabricated and its optical characteristic is investigated in detail. The ring resonator is fabricated by coiling the tapered fiber, which is firstly made by heating and stretching a piece of optical fiber, after the polymer protective cladding has been removed The comb filter with a constant free spectral range (FSR) and the maximum extinction ratio of 4.2 dB is achieved by a single-mode fiber based ring resonator. The FSR of ring resonator can be adjusted by controlling the diameter of the ring. The extinction ratio is improved in the polarization maintaining fiber based ring resonator where the maximum extinction ratio of 14 dB is achieved at 1531 nm region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号