首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Electron detachment dissociation (EDD) has recently been shown by Amster and coworkers to constitute a valuable analytical approach for structural characterization of glycosaminoglycans. Here, we extend the application of EDD to neutral and sialylated oligosaccharides. Both branched and linear structures are examined, to determine whether branching has an effect on EDD fragmentation behavior. EDD spectra are compared to collisional activated dissociation (CAD) and infrared multiphoton dissociation (IRMPD) spectra of the doubly and singly deprotonated species. Our results demonstrate that EDD of both neutral and sialylated oligosaccharides provides structural information that is complementary to that obtained from both CAD and IRMPD. In all cases, EDD resulted in additional cross-ring cleavages. In most cases, cross-ring fragmentation obtained by EDD is more extensive than that obtained from IRMPD or CAD. Our results also indicate that branching does not affect EDD fragmentation, contrary to what has been observed for electron capture dissociation (ECD).  相似文献   

2.
Gangliosides play important biological roles and structural characterization of both the carbohydrate and the lipid moieties is important. The FT-ICR MS/MS techniques of electron capture dissociation (ECD), electron detachment dissociation (EDD), and infrared multiphoton dissociation (IRMPD) provide extensive fragmentation of the protonated and deprotonated GM1 ganglioside. ECD provides extensive structural information, including identification of both halves of the ceramide and cleavage of the acetyl moiety of the N-acetylated sugars. IRMPD provides similar glycan fragmentation but no cleavage of the acetyl moiety. Cleavage between the fatty acid and the long-chain base of the ceramide moiety is seen in negative-ion IRMPD but not in positive-ion IRMPD of GM1. Furthermore, this extent of fragmentation requires a range of laser powers, whereas all information is available from a single ECD experiment. However, stepwise fragmentation by IRMPD may be used to map the relative labilities for a series of cleavages. EDD provides the alternative of electron-induced fragmentation for negative ions with extensive fragmentation, but suffers from low efficiency as well as complication of data analysis by frequent loss of hydrogen atoms. We also show that analysis of MS/MS data for glycolipids is greatly simplified by classification of product ion masses to specific regions of the ganglioside based solely on mass defect graphical analysis.  相似文献   

3.
The first application of electron detachment dissociation (EDD) to carbohydrates is presented. The structural characterization of glycosaminoglycan (GAG) oligosaccharides by mass spectrometry is a longstanding problem because of the lability of these acidic, polysulfated carbohydrates. Doubly-charged negative ions of four GAG tetrasaccharides are examined by EDD, collisionally activated dissociation (CAD), and infrared multiphoton dissociation (IRMPD). EDD is found to produce information-rich mass spectra with both cross ring and glycosidic cleavage product ions. In contrast, most of the product ions produced by CAD and IRMPD result from glycosidic cleavage. EDD shows great potential as a tool for locating the sites of sulfation and other modifications in glycosaminoglycan oligosaccharides.  相似文献   

4.
The fragmentation of electrospray-generated multiply deprotonated RNA and mixed-sequence RNA/DNA pentanucleotides upon low-energy collision-induced dissociation (CID) in a hybrid quadrupole time-of-flight mass spectrometer was investigated. The goal of unambiguous sequence identification of mixed-sequence RNA/DNA oligonucleotides requires detailed understanding of the gas-phase dissociation of this class of compounds. The two major dissociation events, base loss and backbone fragmentation, are discussed and the unique fragmentation behavior of oligoribonucleotides is demonstrated. Backbone fragmentation of the all-RNA pentanucleotides is characterized by abundant c-ions and their complementary y-ions as the major sequence-defining fragment ion series. In contrast to the dissociation of oligodeoxyribonucleotides, where backbone fragmentation is initiated by the loss of a nucleobase which subsequently leads to the formation of the w- and [a-base]-ions, backbone dissociation of oligoribonucleotides is essentially decoupled from base loss. The different behavior of RNA and DNA oligonucleotides is related to the presence of the 2'-hydroxyl substituent, which is the only structural alteration between the DNA and RNA pentanucleotides studied. CID of mixed-sequence RNA/DNA pentanucleotides results in a combination of the nucleotide-typical backbone fragmentation products, with abundant w-fragment ions generated by cleavage of the phosphodiester backbone adjacent to the deoxy building blocks, whereas backbone cleavage adjacent to ribonucleotides induces the formation of c- and y-ions.  相似文献   

5.
Mass spectrometry (MS) is extensively used for the identification and sequencing of nucleic acids but has so far seen limited use for characterization of their higher order structures. Here, we have applied a range of different tandem mass spectrometry techniques, including electron detachment dissociation (EDD), infrared multiphoton dissociation (IRMPD), activated ion (AI) EDD, and EDD/IRMPD MS3, in a Fourier transform ion cyclotron resonance mass spectrometer to the characterization of three isomeric 15mer DNAs with different sequences and predicted solution-phase structures. Our goal was to explore whether their structural differences could be directly probed with these techniques. We found that all three 15mers had higher order structures in the gas phase, although preferred structures were predicted for only two of them in solution. Nevertheless, EDD, AI EDD, and EDD/IRMPD MS3 experiments yielded different cleavage patterns with less backbone fragmentation for the more stable solution-phase structure than for the other two 15mers. By contrast, no major differences were observed in IRMPD, although the extent of backbone cleavage was higher with that technique for all three 15mers. Thus, experiments utilizing the radical ion chemistry of EDD can provide complementary structural information compared to traditional slow heating methods, such as IRMPD, for structured nucleic acids.  相似文献   

6.
Fragmentation of peptide polyanions by electron detachment dissociation (EDD) has been induced by electron irradiation of deprotonated polypeptides [M-nH](n-) with >10 eV electrons. EDD has been found to lead preferentially to a* and x fragment ions (C(alpha)-C backbone cleavage) arising from the dissociation of oxidized radical anions [M-nH]((n-1)-*. We demonstrate that C(alpha)-C cleavages, which are otherwise rarely observed in tandem mass spectrometry, can account for most of the backbone fragmentation, with even-electron x fragments dominating over radical a* ions. Ab initio calculations at the B3 LYP level of theory with the 6-311+G(2 p,2 d)//6-31+G(d,p) basis set suggested a unidirectional mechanism for EDD (cleavage always N-terminal to the radical site), with a*, x formation being favored over a, x* fragmentation by 74.2 kJ mol(-1). Thus, backbone C(alpha)-C bonds N-terminal to proline residues should be immune to EDD, in agreement with the observations. EDD may find application in mass spectrometry for such tasks as peptide sequencing and localization of labile post-translational modifications, for example, those introduced by sulfation and phosphorylation. EDD can now be performed not only in Fourier transform mass spectrometry, but also in far more widely used quadrupole (Paul) ion traps.  相似文献   

7.
Electron detachment dissociation of dermatan sulfate oligosaccharides   总被引:1,自引:1,他引:0  
The structural characterization of glycosaminoglycans (GAG) oligosaccharides has been a long-standing challenge in the field of mass spectrometry. In this work, we present the application of electron detachment dissociation (EDD) Fourier transform mass spectrometry to the analysis of dermatan sulfate (DS) oligosaccharides up to 10 residues long. The EDD mass spectra of DS oligosaccharides were compared with their infrared multiphoton dissociation (IRMPD) mass spectra. EDD produces more abundant fragmentation than IRMPD with far less loss of SO3 from labile sulfate modifications. EDD cleaves all glycosidic bonds, yielding both conventional glycosidic bond fragmentation as well as satellite peaks resulting from the additional loss of 1 or 2 hydrogen atoms. EDD also yields more cross-ring fragmentation than IRMPD. For EDD, abundant cross-ring fragmentation in the form of A- and X-ions is observed, with 1,5Xn cleavages occurring for all IdoA residues and many of the GalNAc4S residues, except at the reducing and nonreducing ends. In contrast, IRMPD produces only A-type cross-ring fragmentation for long oligosaccharides (dp6-dp10). As all the structurally informative fragment ions observed by IRMPD appear as a subset of the peaks found in the EDD mass spectrum, EDD shows great potential for the characterization of GAG oligosaccharides using a single tandem mass spectrometry experiment.  相似文献   

8.
A new technique for fragmentation of cations and anions of peptides stored in ion traps including radiofrequency devices is described. The technique involves irradiation of peptide ions by a beam of particles generated by a fast atom bombardment (FAB) gun. This irradiation leads to fragmentation of N--C(alpha) backbone bonds (c- and z-fragments) and S--S bonds for cations and C(alpha)-C backbone bonds (a- and x-fragments) for anions of peptides. The fragmentation patterns observed are hypothesized to be due to the interaction of peptide ions with metastable, electronically excited species generated by the FAB gun. Interaction of a metastable atom A* with a peptide n-cation M(n+) leads to the electron transfer from the metastable atom to the polycation through the formation of an ion-pair collision complex A(+.) . . . M((n-1)+.) and subsequent fragmentation of the peptide cation. Thus, for polycations, this metastable-induced dissociation of ions (MIDI) is similar to the phenomenon of electron capture dissociation (ECD). Interaction of A* with an anion leads to the deexcitation of the metastable species and detachment of an electron from the anion. This in turn leads to backbone fragmentation similar to that in electron detachment dissociation (EDD). The MIDI technique is robust and efficient, and it is applicable to peptides in as low charge states as 2+ or 2-.  相似文献   

9.
Electron capture dissociation (ECD) has been demonstrated to be an effective fragmentation technique for characterizing the site and structure of the fatty acid modification in ghrelin, a 28-residue growth-hormone-releasing peptide that has an unusual ester-linked n-octanoyl (C8:0) modification at Ser-3. ECD cleaves 21 of 23 possible backbone amine bonds, with the product ions (c and z· ions) covering a greater amino acid sequence than those obtained by collisionally activated dissociation (CAD). Consistent with the ECD nonergodic mechanism, the ester-linked octanoyl group is retained on all backbone cleavage product ions, allowing for direct localization of this labile modification. In addition, ECD also induces the ester bond cleavage to cause the loss of octanoic acid from the ghrelin molecular ion; the elimination process is initiated by the capture of an electron at the protonated ester group, which is followed by the radical-site-initiated reaction known as -cleavage. The chemical composition of the attached fatty acid can be directly obtained from the accurate Fourier transform ion cyclotron resonance (FTICR) mass measurement of the ester bond cleavage product ions.  相似文献   

10.
Electron capture dissociation (ECD) of doubly protonated hyperbranched polyesteramide oligomers (1100-1900 Da) was examined and compared with the structural information obtained by low energy collisionally activated dissociation (CAD). Both the ester and amide bonds of the protonated species were cleaved easily upon ECD with the formation of odd electron (OE(.+)) or even electron (EE(+)) fragment ions. Several mechanistic schemes are proposed that describe the complex ECD fragmentation behavior of the multiply charged oligomers. In contrast to studies of biomolecules, the present results indicate that consecutive cleavages induced by intramolecular H-shifts are significant for ECD and of less importance for low energy CAD. The capture of an electron by the ionized species results in fragmentation associated with a redistribution of the excess internal energy over the products and the subsequent bond cleavage. Low energy, multiple collision CAD is found to be a more selective dissociation method than ECD in view of the observation that only amide bonds are cleaved for most of the hyperbranched polymers examined with CAD in this study. ECD appears not to provide complementary structural information compared to CAD in the study of hyperbranched polymers, even though a significantly more complex ECD fragmentation behavior is observed. ECD is shown to be of use for the structural characterization of large oligomers that may not dissociate upon low energy CAD. This is a direct result of the fact that ECD produces ionized hyperbranched oligomers with a relatively high internal energy.  相似文献   

11.
Here, we investigate the effect of the structure (generation) and nature of the surface groups of different polyamidoamine (PAMAM) dendrimers on electron-mediated dissociation, either electron capture dissociation (ECD) or electron detachment dissociation (EDD), and compare the fragmentation with that observed in collision-induced dissociation (CID). ECD and EDD of the PAMAM dendrimers resulted in simple mass spectra, which are straightforward to interpret, whereas CID produced complex mass spectra. The results show that electron-mediated dissociation (ECD and EDD) of PAMAM dendrimers does not depend on the nature of the surface group but tends to occur within the innermost generations. CID of the PAMAM dendrimers showed a strong dependence on the nature of the surface group and occurred mostly in the outer generation. The results demonstrate the potential utility of ECD and EDD as a tool for the structural analysis of PAMAM dendrimers.  相似文献   

12.
The electron capture dissociation (ECD) of metallo-supramolecular dinuclear triple-stranded helicate Fe2L34+ ions was determined by Fourier transform ion cyclotron resonance mass spectrometry. Initial electron capture by the di-iron(II) triple helicate ions produces dinuclear double-stranded complexes analogous to those seen in solution with the monocationic metal centers CuI or AgI. The gas-phase fragmentation behavior [ECD, collision-induced dissociation (CID), and infrared multiphoton dissociation (IRMPD)] of the di-iron double-stranded complexes, (i.e., MS3 of the ECD product) was compared with the ECD, CID, and IRMPD of the CuI and AgI complexes generated from solution. The results suggest that iron-bound dimers may be of the form Fe2IL22+ and that ECD by metallo-complexes allows access, in the gas phase, to oxidation states and coordination chemistry that cannot be accessed in solution.  相似文献   

13.
We report electron capture dissociation (ECD) and infrared multiphoton dissociation (IRMPD) of doubly protonated and protonated/alkali metal ionized oligodeoxynucleotides. Mass spectra following ECD of the homodeoxynucleotides polydC, polydG, and polydA contain w or d "sequence" ions. For polydC and polydA, the observed fragments are even-electron ions, whereas radical w/d ions are observed for polydG. Base loss is seen for polydG and polydA but is a minor fragmentation pathway in ECD of polydC. We also observe fragment ions corresponding to w/d plus water in the spectra of polydC and d(GCATGC). Although the structure of these ions is not clear, they are suggested to proceed through a pentavalent phosphorane intermediate. The major fragment in ECD of d(GCATGC) is a d ion. Radical a- or z-type fragment ions are observed in most cases. IRMPD primarily results in base loss, but backbone fragmentation is also observed. IRMPD provides more sequence information than ECD, but the spectra are more complex due to extensive base and water losses. It is proposed that the smaller degree of sequence coverage in ECD, with fragmentation mostly occurring close to the ends of the molecules, is a consequence of a mechanism in which the electron is captured at a P=O bond, resulting in a negatively charged phosphate group. Consequently, at least two protons (or alkali metal cations) must be present to observe a w or d fragment ion, a requirement that is less likely for small fragments.  相似文献   

14.
Electron detachment dissociation (EDD) Fourier transform mass spectrometry has recently been shown to be a powerful tool for examining the structural features of sulfated glycosaminoglycans (GAGs). The characteristics of GAG fragmentation by EDD include abundant cross-ring fragmentation primarily on hexuronic acid residues, cleavage of all glycosidic bonds, and the formation of even- and odd-electron product ions. GAG dissociation by EDD has been proposed to occur through the formation of an excited species that can undergo direct decomposition or ejects an electron and then undergoes dissociation. In this work, we perform electron-induced dissociation (EID) on singly charged GAGs to identify products that form via direct decomposition by eliminating the pathway of electron detachment. EID of GAG tetrasaccharides produces cleavage of all glycosidic bonds and abundant cross-ring fragmentation primarily on hexuronic acid residues, producing fragmentation similar to EDD of the same molecules, but distinctly different from the products of infrared multiphoton dissociation or collisionally activated decomposition. These results suggest that observed abundant fragmentation of hexuronic acid residues occurs as a result of their increased lability when they undergo electronic excitation. EID fragmentation of GAG tetrasaccharides results in both even- and odd-electron products. EID of heparan sulfate tetrasaccharide epimers produces identical fragmentation, in contrast to EDD, in which the epimers can be distinguished by their fragment ions. These data suggest that for EDD, electron detachment plays a significant role in distinguishing glucuronic acid from iduronic acid.  相似文献   

15.
16.
Electron detachment dissociation (EDD) of peptide poly-anions is gentle towards post-translational modifications (PTMs) and produces predictable and interpretable fragment ion types (a., x ions). However, EDD is considered an inefficient fragmentation technique and has not yet been implemented in large-scale peptide characterization strategies. We successfully increased the EDD fragmentation efficiency (up to 9%), and demonstrate for the first time the utility of EDD-MS/MS in liquid chromatography time-scale experiments. Peptides and phosphopeptides were analyzed in both positive- and negative-ion mode using electron capture/transfer dissociation (ECD/ETD) and EDD in comparison. Using approximately 1 pmol of a BSA tryptic digest, LC-EDD-MS/MS sequenced 14 peptides (27% aa sequence coverage) and LC-ECD-MS/MS sequenced 19 peptides (39% aa sequence coverage). Seven peptides (18% aa sequence coverage) were sequenced by both EDD and ECD. The relative small overlap of identified BSA peptides demonstrates the complementarity of the two dissociation modes. Phosphopeptide mixtures from three trypsin-digested phosphoproteins were subjected to LC-EDD-MS/MS resulting in the identification of five phospho-peptides. Of those, one was not found in a previous study using a similar sample and LC-ETD-MS/MS in the positive-ion mode. In this study, the ECD fragmentation efficiency (15.7% av.) was superior to the EDD fragmentation efficiency (3.6% av.). However, given the increase in amino acid sequence coverage and extended PTM characterization the new regime of EDD in combination with other ion-electron fragmentation techniques in the positive-ion mode is a step towards a more comprehensive strategy of analysis in proteome research.  相似文献   

17.
Noncovalent complexes of DNA and Hoechst 33258 were investigated by ESI-FT/ICR MS in various activation modes (collision-induced dissociation (CID), sustained off-resonance irradiation collision-induced dissociation (SORI-CID), infrared multiphoton dissociation (IRMPD) and electron detachment dissociation (EDD)). The binding selectivity of Hoechst 33258 was confirmed by the comparative study of its noncovalent association with different DNA sequences. The CID spectra of [ds + HO - 5H](5-) obtained with a linear hexapole ion trap resulted in unzipping of the strands. This outcome is a clue to the drug-binding mode, shading light on the localization of the binding sites of Hoechst 33258 to the DNA sequence. The IRMPD and SORI-CID experiments mainly gave DNA backbone cleavages and internal fragment ions. From this result, information on the localization of the binding sites of Hoechst 33258 in the DNA sequence was obtained. No sodium cationization was observed on the DNA sequence ions although they were present on fragmentation of the duplex, indicating that the backbone cleavages were generated from the single strand associated with the Hoechst 33258 where the number of alkali cation is restricted. Under electron detachment (ED) conditions, multiple EDs were achieved for the [ds + HO - 5H](5-) ion without any significant dissociation. The presence of drug appears to enhance the stability of the multiply charged system. It was proposed that the studied noncovalent complex involved the formation of zwitterions and consequently strong salt-bridge interactions between DNA and drug.  相似文献   

18.
The radical ion chemistry of a suite of S-nitrosopeptides has been investigated. Doubly and triply-protonated ions of peptides NYCGLPGEYWLGNDK, NYCGLPGEYWLGNDR, NYCGLPGERWLGNDR, NACGAPGEKWAGNDK, NYCGLPGEKYLGNDK, NYGLPGCEKWYGNDK and NYGLPGEKWYGCNDK were subjected to electron capture dissociation (ECD), and collision-induced dissociation (CID). The peptide sequences were selected such that the effect of the site of S-nitrosylation, the nature and position of the basic amino acid residues, and the nature of the other amino acid side chains, could be interrogated. The ECD mass spectra were dominated by a peak corresponding to loss of ?NO from the charge-reduced precursor, which can be explained by a modified Utah-Washington mechanism. Some backbone fragmentation in which the nitrosyl modification was preserved was also observed in the ECD of some peptides. Molecular dynamics simulations of peptide ion structure suggest that the ECD behavior was dependent on the surface accessibility of the protonated residue. CID of the S-nitrosylated peptides resulted in homolysis of the S?CN bond to form a long-lived radical with loss of ?NO. The radical peptide ions were isolated and subjected to ECD and CID. ECD of the radical peptide ions provided an interesting comparison to ECD of the unmodified peptides. The dominant process was electron capture without further dissociation (ECnoD). CID of the radical peptide ions resulted in cysteine, leucine, and asparagine side chain losses, and radical-induced backbone fragmentation at tryptophan, tyrosine, and asparagine residues, in addition to charge-directed backbone fragmentation.  相似文献   

19.
The effectiveness of two activation techniques, collision activated dissociation (CAD) and infrared multiphoton dissociation (IRMPD), is compared for structural characterization of protonated and lithium-cationized macrolides and a series of synthetic precursors in a quadrupole ion trap (QIT). Generally, cleavage of the glycosidic linkages attaching the sugars to the macrolide ring and water losses constitute the major fragmentation pathways for most of the protonated compounds. In the IRMPD spectra, a diagnostic fragment ion assigned as the desosamine ion is a dominant ion that is not observed in the CAD spectra because of the higher m/z limit of the storage range required during collisional activation. Activation of the lithium-cationized species results in new diagnostic fragmentation pathways that are particularly useful for confirming the identities of the protecting groups in the synthetic precursors. Multi-step IRMPD allows mapping of the fragmentation genealogies in greater detail and supports the proposed structures of the fragment ions.  相似文献   

20.
The use of peptide nucleic acids (PNAs) is steadily increasing in biochemistry and diagnostics. So far, PNAs have mostly been investigated using cationic conditions in mass spectrometry. Furthermore, the use of fragmentation techniques developed for peptides and proteins like infrared multiphoton dissociation (IRMPD) and electron capture dissociation (ECD) has barely been examined. However, especially the fragmentation behavior of PNA oligomers in negative ion mode is of high importance, due to the ability to interact with nucleic acids which are almost exclusively analyzed in the negatively charged state. In the current study PNA fragmentations under cationic and anionic conditions were investigated and different fragmentation techniques like collision‐induced dissociation (CID), IRMPD and ECD were applied. Especially when using CID and IRMPD, amide bonds were broken, whereas ECD resulted in the elimination of nucleobases. Differences were also observed between positive and negative ionization, while the sequence coverage for the negative ions was superior to positive ions. The fragmentation behavior using IRMPD led to almost complete sequence coverage. Additionally, in anions the interesting effect of multiple eliminations of HNCO was found. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号