首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
结构化液体是近年来基于二元流体体系,利用固体粒子液/液界面自组装和堵塞相变构筑的一类非平衡态软物质材料,兼具固体的结构稳定性和液体的流动性.然而,受限于组装基元和成型方法,制备具有精准结构的智能结构化液体及衍生功能材料仍面临挑战.我们课题组在该领域开展了大量研究工作,在发展界面调控新机制,制备液体/固体新材料,以及实现材料器件新突破等方面取得了系列创新成果.本专论从固体粒子界面自组装机制出发,重点阐述了一种利用纳米粒子和聚合物液/液界面共组装制备纳米粒子表面活性剂,进而构筑结构化液体的普适策略;总结归纳了结构化液体在响应性调控、高效精准构筑以及功能材料制备等方面的研究进展;并对该领域面临的机遇和挑战做出展望.  相似文献   

2.
近年来,苯丙氨酸二肽类分子的自组装研究受到了广泛关注,已成为超分子化学、生物材料科学研究的前沿领域之一。苯丙氨酸二肽类纳米组装体因具有结构多样、易功能化以及良好的生物相容性等优点,在纳米制造、组织修复等方面展示出巨大的应用潜力。本文从分子设计、组装结构调控与材料应用三个层次系统综述了苯丙氨酸二肽类分子自组装的研究进展。首先总结了苯丙氨酸二肽类分子的修饰改性,包括乙酰基、芳香环、氨基酸、短肽等基团。然后,重点介绍了苯丙氨酸二肽类分子自组装的调控策略和方法,如溶剂、界面、气相、多组分共组装和酶催化组装。最后,介绍了苯丙氨酸二肽类自组装材料在纳米材料合成、传感检测、药物传递及组织修复等方面的应用现状,并分析了该领域今后的发展方向。  相似文献   

3.
制备纳米粒子组装体系是构筑纳米结构的重要方法之一,本文综述了纳米粒子组装体系的制备方法及其性质和应用研究。  相似文献   

4.
聚合诱导自组装(PISA)是一种新兴的纳米粒子制备技术,它集聚合与组装过程于一体,可在高固含量条件下进行,因此备受青睐.此外,通过改变嵌段聚合度以及固含量等参数,可以精确地控制纳米粒子的形貌,实现从球形胶束到空心囊泡的形貌转变.然而,受限于适用于PISA体系的聚合方法和单体种类,其发展也受到了一定的限制.目前,PISA主要基于可逆加成-断裂链转移聚合(RAFT),其在聚合诱导自组装机理、形貌控制、结构表征等方面的研究成果,对于高分子化学其他领域具有重要的参考价值.然而,由于RAFT聚合诱导自组装(RAFT-PISA)体系中适用的单体往往局限于(甲基)丙烯酸酯类和苯乙烯类,导致RAFT-PISA制备的纳米粒子限于其碳-碳主链的基本结构难以生物降解,因此生物医用前景并不乐观.为了克服以上缺陷,开环聚合诱导自组装(ROPISA)应运而生,主要包括开环易位聚合诱导自组装(ROMPISA)、氨基酸-N-羧基-环内酸酐开环聚合诱导自组装(NCA-PISA)及自由基开环聚合诱导自组装(r ROPISA).由于ROMPISA体系对诸多功能性基团表现出化学惰性,从而为多功能纳米粒子的原位制备提供了新的方...  相似文献   

5.
Janus粒子由于其表面性质与形状特征的不对称性而展现出独特的力学、光学、电学、磁学和表面两亲性能,在构筑复杂组装结构及设计新型功能材料方面有着广阔的应用前景.本文主要从计算机模拟与理论分析的角度,结合相关实验体系,系统地总结了目前对含Janus粒子组装体的体系构筑、结构调控及材料功能等的相关研究进展.从Janus粒子自组装结构的精确构筑与动态响应性、界面结构的熵驱调控、非平衡组装动力学及含Janus粒子组装体功能的模拟与预报等4个方面,详细阐述了Janus粒子的复杂多级组装结构及其背后蕴含的热力学与动力学的机理,并介绍了一系列基于含Janus粒子组装体的聚合物基复合材料独特的功能及其潜在应用.在此基础上,指出合理设计Janus粒子的非对称性质以及巧妙调控组装体内的熵、焓平衡,是控制其多级组装结构,进而开发相应新型功能材料的关键,并对Janus粒子未来的理论和模拟研究趋势进行了展望.  相似文献   

6.
卟啉是具有大π共轭结构的环状分子,可在非共价键的作用下通过可控自组装形成有序的纳米结构,通过分子间协同作用实现光电性质的有效调控.然而,精确调控自组装过程以获得形貌可控、尺寸均一、内部结构有序的自组装纳米结构,并阐明控制性能的关键因素仍然是一个巨大的挑战.本文综述了近年来卟啉自组装纳米结构的溶液相自组装策略及其在光催化、化学传感和生物光疗领域中应用的最新进展,并初步总结了卟啉自组装纳米结构的形貌、尺寸和内部结构与性能的构效关系.  相似文献   

7.
叙述了一系列增强纳米粒子光热性能的方法,包括通过自组装方法调控纳米粒子的空间排列,进而优化电子结构和光热转化性能;在纳米粒子及其组装结构外表面进一步包覆具有光热性质的聚合物等.这些手段能够有效地增强光热试剂在近红外光区的消光能力,达到增强光热性能的目的.另外,包覆聚合物壳层后,纳米粒子的胶体稳定性、光稳定性以及生物兼容性都能得到进一步提高,为后续的体外细胞实验和动物体内肿瘤模型实验提供了可能.  相似文献   

8.
马世营  汪蓉 《高分子学报》2016,(8):1030-1041
嵌段共聚物和纳米粒子复合纳米材料具有优异的性能,在生物医药、光电材料、催化材料等领域具有很大的应用价值,已成为备受关注的研究热点.利用嵌段共聚物自组装能够形成特定形态的纳米结构聚集体,将纳米粒子选择性的分布和定位于嵌段共聚物聚集体中,可以改善纳米粒子的性能及其应用.本文综述了近年来实验上利用自组装制备嵌段共聚物-纳米粒子复合纳米材料的方法,并总结分析了影响纳米粒子在嵌段共聚物聚集体中的分布和定位的各种因素,包括纳米粒子的大小、形状及其表面化学.最后总结了嵌段共聚物-纳米粒子的自组装在理论模拟方面的研究.  相似文献   

9.
王娟  邹千里  闫学海 《化学学报》2017,75(10):933-942
生物分子自组装对生物体有重要意义,利用生物分子构筑具有功能性的有序组装体一直是人们关注的焦点.肽分子是一类重要的组装基元,肽的超分子自组装可形成多种纳米或微米尺度的结构,并可应用于能源、医药等领域.如何实现肽自组装结构的精准调控以及精准调控肽自组装实现功能化,是目前该领域面临的新挑战.肽的自组装是基于非共价键力的协同作用实现的,通过各种因素调节这些非共价键力的作用,是实现自组装结构调控和功能化的关键.虽然自组装结构调控可以通过改变外部环境调控,但是通过精确分子设计、组装基元分子间的相互作用调控可以更好地实现结构的精准调控;并有利于进一步通过引入功能性分子作为组装基元,实现自组装体的功能化.本文将针对肽自组装体的结构调控以及功能化两个方面对相关研究进行综述.  相似文献   

10.
通过耗散粒子动力学方法,模拟了二元配体链包覆的纳米粒子表面的相分离行为,并与现有的模拟和实验体系进行对比.研究结果印证了相分离驱动力是配体链错位所导致的构象熵的结论.进一步以相分离得到的Janus和三嵌段Janus结构纳米粒子作为构筑单元,研究了其在选择性溶剂中的自组装行为.结果表明,Janus粒子易自组装成为双层囊泡结构,而三嵌段Janus粒子则更易形成单层囊泡结构.对于从配体链包覆的纳米粒子出发,设计具有特殊功能的囊泡提供了理论支持.  相似文献   

11.
纳米粒子的控制生长和自组装研究进展   总被引:4,自引:0,他引:4  
由于在纳米器件上潜在应用,通过化学方法控制的纳米粒子生长,以及纳米粒子自组装的一维、二维和三维点阵受到人们的广泛关注。本文介绍来近年来纳米粒子的控制生长和组装研究的现状。主要探讨了有机稳定剂对纳米粒子形状和尺寸控制的影响。含配位基团和长链烷烃的有机化合物不但可以用控制纳米粒子生长的稳定剂,而且可以用作纳米粒子自组装的模板剂。  相似文献   

12.
嵌段共聚物可自发组装形成形貌丰富的纳米粒子和有序纳米结构的材料,为纳米材料和纳米技术领域提供了很重要的新材料和新手段.该领域的进一步发展提出了对嵌段共聚物的自组装体赋予功能性的要求,即需要通过可控聚合反应合成反应性嵌段共聚物,并且对其自组装的纳米粒子进行结构、形状及功能性的调控.本文针对以上研究目标,结合本课题组在该领...  相似文献   

13.
李延春  李洋 《化学进展》2015,27(7):848-852
金纳米粒子除了拥有纳米粒子的体积效应、表面效应、量子尺寸效应、宏观量子隧道效应等优异性能之外,还有一些特殊性能,如良好的稳定性、抗菌抑菌功能、表面吸收带效应、荧光效应等。量子化学计算方法提供了从分子水平上探究金团簇的催化和反应活性的影响因素,如金团簇的尺寸、形状、电子状态、活性位点的类型和结构等。分子动力学可以更好地模拟纳米粒子与配体和溶剂的相互作用方式,同时给出热力学和动力学行为。耗散粒子动力学等介观模拟方法则被应用到金纳米粒子和聚合物复合体系自组装过程的研究,并可以给出调控自组装结构的有效方案。以高分子与纳米粒子复合物为研究对象,明晰影响复合物结构和性质的主导因素,探索复合物调控机制,提出决定复合物功能的主控因素,进一步理解高分子与纳米粒子复合物的本质,可以为实验上制备、优化新型高分子与纳米粒子复合物材料提供可靠的理论帮助。  相似文献   

14.
由纳米粒子自下而上自组装而成、高度有序的纳米粒子超晶格材料是近年来兴起的一类新型材料.本文主要概述了软外延生长法构筑纳米粒子超晶格材料的概念及组装策略,结合近几年本课题组的相关研究工作,主要介绍了几种不同的基底材料,以及通过调控基底与纳米粒子之间的相互作用来构建纳米粒子超晶格材料.具体包括以纳米粒子超晶格、有机分子笼晶体以及超分子组装体等作为基底诱导纳米粒子软外延生长.通过软外延生长法可实现对纳米粒子超晶格维度(包括一维、二维以及三维)的有效调控.同时,阐明了纳米粒子与基底材料的弱键相互作用机制,该机制也成为构筑无机纳米粒子/有机分子有序组装体重要的物理化学基础.  相似文献   

15.
金属配合物分子纳米结构构筑与调控的STM研究进展   总被引:1,自引:1,他引:0  
金属配合物分子具有结构多样且可控以及功能丰富等特点,在催化、传感、分子识别、纳米器件等领域得到广泛应用, 对金属配合物分子的研究已是分子科学研究中的热点之一.同时, 利用配合物分子构筑表面分子纳米结构以及对配合物单分子性质的研究也日趋活跃. 近年来, 本研究组发展了配合物分子在固体表面的自组装技术, 并结合扫描隧道显微技术(STM)开展了一系列有关金属配合物分子表面纳米结构的研究工作, 在固体表面成功实现了对配体、配合物分子的高分辨STM成像、原位配合以及分子识别, 设计和构筑了多种功能配合物分子纳米结构,并系统研究了结构形成规律. 本文以本研究组近年来有关金属配合物分子组装的研究结果为主, 结合国内外相关研究小组的研究结果,综述有关金属配合物分子纳米结构的构筑与调控的STM研究进展, 介绍该类分子在固体表面的组装和分散规律, 为表面分子纳米结构的构筑和调控提供理论和实验基础.  相似文献   

16.
利用光照引发的光化学变化,作为一种通过宏观手段向微观系统提供能量和外加刺激的理想手段,在分子自组装研究中起到了重要的作用.通过光化学变化可以实现对分子自组装结构从分子结构到微观结构,再到宏观性质的多层级调控.反之,通过其他手段调节聚集体的组装结构和分子排列,也可以控制改变聚集体的发光情况.此外,分子荧光探针为认识纳米尺度的分子自组装结构的微观环境提供了有力的支持,是研究自组装结构中不可取代的重要表征手段.本文就光化学手段对分子自组装结构的调控与探测,以及自组装结构对发光分子的光学性质的影响等方面进行了介绍.  相似文献   

17.
近年来 ,自组装膜的研究不断引起人们重视[1] .一方面 ,其兴趣可能源于纳米级器件的组装 ,如生物传感器等 [2 ] ;另一方面 ,它可作为研究摩擦学 [3]、生物膜模拟 [4 ]和微观浸润性的模型体系 [5] .树枝状分子的结构可在分子水平上精确控制 ,是很有潜力的纳米构筑基元 [6 ] .不同于常规的自组装膜构筑基元 ,树枝状分子的特殊结构使其在金属表面形成某些特殊的组装结构成为可能 .结合界面分子自组装技术和树枝状分子化学 ,国内外已有机构开展了树枝状硫醇的自组装膜的研究[7~ 9] .我们曾发现一种聚醚树枝状硫醇分子在金表面形成的自组装单层…  相似文献   

18.
纳米材料的自组装研究进展   总被引:15,自引:0,他引:15  
刘欢  翟锦  江雷 《无机化学学报》2006,22(4):585-597
本文主要评述了近年来纳米材料自组装的研究进展,即对以纳米材料(包括零维的纳米粒子和一维的纳米管/线)为单元而开展的自组装方面的工作进行了介绍。将纳米材料自组装为各种尺度的有序结构会产生更优异的整体的协同性质,这对于以纳米材料为基础而构筑的微纳米器件有着重要的意义。由于目前纳米材料的研究主要集中在零维和一维体系,因此,本文分别就此两种体系的自组装行为进行了评述。具体内容包括:单分子层薄膜修饰的无机纳米粒子的自组装、大分子修饰的无机纳米粒子的自组装、未被修饰的无机纳米粒子的自组装;表面张力及毛细管力诱导的一维纳米材料的自组装、模板诱导的一维纳米材料的自组装、静电力诱导的一维纳米材料的自组装。  相似文献   

19.
杨平辉  孙巍  胡思  陈忠仁 《化学进展》2014,26(7):1107-1119
近年来,随着纳米技术的发展及Pickering乳液在食品、化妆品、医药等领域中的应用,纳米粒子的界面自组装现象引起了人们的广泛关注。界面能的降低是纳米粒子液液界面自组装的主要驱动力。通过改变纳米粒子的尺寸和表面配体的化学性质,可控制纳米粒子的界面自组装行为。本文综述了不同类型纳米粒子实现界面自组装的研究工作,包括均质纳米粒子、Janus纳米粒子、棒状纳米粒子以及生物纳米粒子。最后,对纳米粒子的界面组装这一领域的可能发展做了展望。  相似文献   

20.
结合耗散粒子动力学模拟和时域有限差分方法,研究了A(BC)_n多嵌段共聚物和纳米粒子共混体系的自组装行为及其光学性能,分析了纳米粒子体积分数和嵌段间相互作用强度对自组装形貌及其光学性能的影响。结果表明,A(BC)_n多嵌段共聚物/纳米粒子共混体系可形成有机/无机杂化的多级结构,改变纳米粒子的体积分数和嵌段间相互作用强度可以调控纳米粒子的分布及其相应的多级结构。不同尺度的结构对不同频率光的反射作用有明显区别,而纳米粒子的加入显著增大了反射峰的强度和宽度。改变纳米粒子的分布可调控反射峰的强度和宽度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号