首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A reagentless d-sorbitol biosensor based on NAD-dependent d-sorbitol dehydrogenase (DSDH) immobilized in a sol–gel carbon nanotubes–poly(methylene green) composite has been developed. It was prepared by durably immobilizing the NAD+ cofactor with DSDH in a sol–gel thin film on the surface of carbon nanotubes functionalized with poly(methylene green). This device enables selective determination of d-sorbitol at 0.2 V with a sensitivity of 8.7?μA?mmol?1?L?cm?2 and a detection limit of 0.11 mmol?L?1. Moreover, this biosensor has excellent operational stability upon continuous use in hydrodynamic conditions.
Figure
Reagentless D-sorbitol biosensor based on NAD-dependent D-sorbitol dehydrogenase (DSDH) immobilized in sol-gel/carbon nanotubes/poly(methylene green) composite  相似文献   

2.
The reactions of a racemic four-coordinate Ni(II) complex [Ni(rac-L)](ClO4)2 with l- and d-alanine in acetonitrile/water gave two six-coordinate enantiomers formulated as [Ni(RR-L)(l-Ala)](ClO4)·2CH3CN (1) and [Ni(SS-L)(d-Ala)](ClO4) (2) (L = 5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclo-tetradecane, Ala? = alanine anion), respectively. Evaporation from the remaining solutions gave two four-coordinate enantiomers characterized as [Ni(SS-L)](ClO4)2 (S-3) and [Ni(RR-L)](ClO4)2 (R-3), respectively. Single-crystal X-ray diffraction analyses of complexes 1 and 2 revealed that the Ni(II) atom has a distorted octahedral coordination geometry, being coordinated by four nitrogen atoms of L in a folded configuration, plus one carboxylate oxygen atom and one nitrogen atom of l- or d-Ala? in mutually cis-positions. Complexes 1 and 2 are supramolecular stereoisomers, constructed via hydrogen bonding between [Ni(RR-L)(l-Ala)]+ or [Ni(SS-L)(d-Ala)]+ monomers to form 1D hydrogen-bonded zigzag chains. The homochiral natures of complexes 1 and 2 have been confirmed by CD spectroscopy.  相似文献   

3.
Stereoselective amino acid analysis has increasingly moved into the scope of interest of the scientific community. In this work, we report a study on the chiral separation of underivatized d,l-His by ligand exchange capillary electrophoresis (LECE), utilizing accurate ex ante calculations. This has been obtained by the addition to the background electrolytes (BGE) of NaClO4 which renders the separations “all in solution processes”, allowing to accurately calculate in advance the concentrations of the species present in solution and to optimize the system performances. To this aim, the formation of ternary complexes of Cu2+ ion and l-lysine (l-Lys) or l-ornithine (l-Orn) with l- and d-histidine (His), and histamine (Hm) have been studied by potentiometry and calorimetry at 25 °C and with 0.1 mol dm?3 (KNO3) in aqueous solution. The ternary species [Cu(L)(l-His)H]+ and [Cu(L)(d-His)H]+ (where L?=?l-Lys or l-Orn) show a slight but still detectable stereoselectivity, and the determination of ΔH° and ΔS° values allowed the understanding of the factors which determine this phenomenon. The stereoselectivity showed by the protonated ternary species has been exploited to chirally separate d,l-His in LECE, by using the binary complexes of copper(II) with l-Lys or l-Orn as background electrolytes added with the appropriate amounts of NaClO4.
Figure
Schematic view of the separation process  相似文献   

4.
l-Ribose is an important precursor for antiviral agents, and thus its high-level production is urgently demanded. For this aim, immobilized recombinant Escherichia coli cells expressing the l-arabinose isomerase and variant mannose-6-phosphate isomerase genes from Geobacillus thermodenitrificans were developed. The immobilized cells produced 99 g/l l-ribose from 300 g/l l-arabinose in 3 h at pH 7.5 and 60 °C in the presence of 1 mM Co2+, with a conversion yield of 33 % (w/w) and a productivity of 33 g/l/h. The immobilized cells in the packed-bed bioreactor at a dilution rate of 0.2 h?1 produced an average of 100 g/l l-ribose with a conversion yield of 33 % and a productivity of 5.0 g/l/h for the first 12 days, and the operational half-life in the bioreactor was 28 days. Our study is first verification for l-ribose production by long-term operation and feasible for cost-effective commercialization. The immobilized cells in the present study also showed the highest conversion yield among processes from l-arabinose as the substrate.  相似文献   

5.
Escherichia coli is able to utilize l-galactonate as a sole carbon source. A metabolic pathway for l-galactonate catabolism is described in E. coli, and it is known to be interconnected with d-galacturonate metabolism. The corresponding gene encoding the first enzyme in the l-galactonate pathway, l-galactonate-5-dehydrogenase, was suggested to be yjjN. However, l-galactonate dehydrogenase activity was never demonstrated with the yjjN gene product. Here, we show that YjjN is indeed an l-galactonate dehydrogenase having activity also for l-gulonate. The K m and k cat for l-galactonate were 19.5?±?0.6 mM and 0.51?±?0.03 s?1, respectively. In addition, YjjN was applied for a quantitative detection of the both of these substances in a coupled assay. The detection limits for l-galactonate and l-gulonate were 1.65 and 10 μM, respectively.  相似文献   

6.
We have developed a fibre optic biosensor with incorporated magnetic microparticles for the determination of biogenic amines. The enzyme diamine oxidase from Pisum sativum was immobilized either on chitosan-coated magnetic microparticles or on commercial microbeads modified with a ferrofluid. Both the immobilized enzyme and the ruthenium complex were incorporated into a UV-cured inorganic–organic polymer composite and deposited on a lens that was connected, by optical fibres, to an electro-optical detector. The enzyme catalyzes the oxidation of amines under consumption of oxygen. The latter was determined by measuring the quenched fluorescence lifetime of the ruthenium complex. The limits of detection for the biogenic amines putrescine and cadaverine are 25–30 μmol?L?1, and responses are linear up to a concentration of 1 mmol L?1.
Figure
Response (fluorescence lifetime) of a novel optical biosensor for biogenic amines (putrescine, cadaverine) determination based on Pisum sativum diamine oxidase immobilized on magnetically responsive chitosan microparticles with entrapped magnetite encapsulated in inorganic–organic polymer ORMOCER® together with ruthenium complex.  相似文献   

7.
An electrophoretically mediated microanalysis assay (EMMA) for the determination of the stereoselective reduction of l-methionine sulfoxide diastereomers by methionine sulfoxide reductase enzymes was developed using fluorenylmethyloxycarbonyl (Fmoc)-l-methionine sulfoxide as substrate. The separation of the diastereomers of Fmoc-l-methionine sulfoxide and the product Fmoc-l-methionine was achieved in a successive multiple ionic-polymer layer-coated capillary using a 50 mM Tris buffer, pH 8.0, containing 30 mM sodium dodecyl sulfate as background electrolyte and an applied voltage of 25 kV. 4-Aminobenzoic acid was employed as internal standard. An injection sequence of incubation buffer, enzyme, substrate, enzyme, and incubation buffer was selected. The assay was optimized with regard to mixing time and mixing voltage and subsequently applied for the analysis of stereoselective reduction of Fmoc-l-methionine-(S)-sulfoxide by human methionine sulfoxide reductase A and of the Fmoc-l-methionine-(R)-sulfoxide by human methionine sulfoxide reductase B. The Michaelis–Menten constant, K m, and the maximum velocity, v max, were determined. Essentially identical data were determined by the electrophoretically mediated microanalysis assay and the analysis of the samples by CE upon offline incubation. Furthermore, it was shown for the first time that Fmoc-methionine-(R)-sulfoxide is a substrate of human methionine sulfoxide reductase B.
Figure
Stereospecific EMMA for methionine sulfoxide reductase enzymes Methionine sulfoxide [Met(O)] which may be generated via oxidation by reactive oxygen species (ROS) is reduced by methionine sulfoxide reductase (Msr) enzymes in a stereospecific manner. The present assay allows the in-capillary incubation of recombinant human Msr enzymes followed by separation and analysis of the Met(O) diastereomers as well as the product methionine.  相似文献   

8.
Since sarcosine and d,l-alanine co-elute on reversed-phase high-performance liquid chromatography (HPLC) columns and the tandem mass spectrometer cannot differentiate them due to equivalent parent and fragment ions, derivatization is often required for analysis of sarcosine in LC/MS systems. This study offers an alternative to derivatization by employing partial elimination of sarcosine by enzymatic oxidation. The decrease in apparent concentration from the traditionally merged sarcosine–alanine peak associated with the enzymatic elimination has been shown to be proportional to the total sarcosine present (R 2?=?0.9999), allowing for determinations of urinary sarcosine. Sarcosine oxidase was shown to eliminate only sarcosine in the presence of d,l-alanine, and was consequently used as the selective enzyme. This newly developed technique has a method detection limit of 1 μg/L (parts per billion) with a linear range of 3 ppb–1 mg/L (parts per million) in urine matrices. The method was further validated through spiked recoveries of real urine samples, as well as the analysis of 35 real urine samples. The average recoveries for low, middle, and high sarcosine concentration spikes were 111.7, 90.8, and 90.1 %, respectively. In conclusion, this simple enzymatic approach coupled with HPLC/MS/MS is able to resolve sarcosine from d,l-alanine leading to underivatized quantification of sarcosine.
Figure
Enzymatic elimination of sarcosine from alanine  相似文献   

9.
An extracellular l-asparaginase produced by a protease-deficient isolate, Bacillus aryabhattai ITBHU02, was purified to homogeneity using ammonium sulfate fractionation and subsequent column chromatography on diethylaminoethyl-Sepharose fast flow and Seralose CL-6B. The enzyme was purified 68.9-fold with specific activity of 680.47 U mg?1. The molecular weight of the purified enzyme was approximately 38.8 kDa on SDS-PAGE and 155 kDa on native PAGE gel as well as gel filtration column revealing that the enzyme was a homotetramer. The optimum activity of purified l-asparaginase was achieved at pH 8.5 and temperature 40 °C. Kinetic studies depicted that the K m, V max, and k cat values of the enzyme were 0.257 mM, 1.537 U μg?1, and 993.93 s?1, respectively. Circular dichroism spectroscopy has showed that the enzyme belonged to α?+?β class of proteins with approximately 74 % α-helices and 12 % β-sheets. BLASTP analysis of N-terminal sequence K-T-I-I-E-A-V-P-E-L-K-K-I-A of purified l-asparaginase had shown maximum similarity with Bacillus megaterium DSM 319. In vitro cytotoxicity assays with HL60 and MOLT-4 cell lines indicated that the l-asparaginase has significant antineoplastic properties.  相似文献   

10.
Direct electrospray ionization mass spectrometry (ESI-MS) assay was used to investigate the stepwise binding of the GM1 pentasaccharide β-D-Galp-(1→3)-β-D-GalpNAc-(1→4)[α-D-Neu5Ac-(2→3)]-β-D-Galp-(1→4)-β-D-Glcp (GM1os) to the cholera toxin B subunit homopentamer (CTB5) and to establish conclusively whether GM1os binding is cooperative. Apparent association constants were measured for the stepwise addition of one to five GM1os to CTB5 at pH 6.9 and 22 °C. The intrinsic association constant, which was established from the apparent association constant for the addition of a single GM1os to CTB5, was found to be (3.2 ± 0.2) × 106 M–1. This is in reasonable agreement with the reported value of (6.4 ± 0.3) × 106 M–1, which was measured at pH 7.4 and 25 °C using isothermal titration calorimetry (ITC). Analysis of the apparent association constants provides direct and unambiguous evidence that GM1os binding exhibits small positive cooperativity. Binding was found to be sensitive to the number of ligand-bound nearest neighbor subunits, with the affinities enhanced by a factor of 1.7 and 2.9 when binding occurs next to one or two ligand-bound subunits, respectively. These findings, which provide quantitative support for the binding model proposed by Homans and coworkers [14], highlight the unique strengths of the direct ESI-MS assay for measuring cooperative ligand binding.
Figure
?  相似文献   

11.
A sensitive fluorescence liquid chromatographic analytical method was developed for the simultaneous determination of carnosine enantiomers in rat plasma. The method was applied to pharmacokinetic studies. Chiral separation of carnosine enantiomers was achieved by pre-column derivatization with o-phthaldialdehyde and the thiol N-acety-l-cysteine as derivating reagents. They were separated on an ODS column and detected by fluorescence detection (λex = 350 nm, λem = 450 nm). γ-Aminobutyric acid was used as internal standard. The method was linear up to 6,000 ng mL?1 for l-carnosine, 4,000 ng mL?1 for d-carnosine. Low limit of quantitation (LLOQ) was 40 ng mL?1 for each isomer. The relative standard deviations obtained for intra- and inter-day precision were lower than 12% and the recoveries were higher than 75% for both enantiomers. The method was applied to a stereoselective study on the pharmacokinetics of carnosine after oral administration with a single dose (carnosine, 75 mg kg?1 for each isomer) to a rat. The initial data indicated that l-carnosine had a larger value of the highest plasma concentration than d-carnosine (C max 5,344 vs. 1,914 ng mL?1), and that of l-carnosine had a lower value of AUC(0?∞) and t 1/2(h) (AUC(0?∞) 5,306 vs. 6,321 ng h mL?1, t 1/2 1.43 vs. 3.37 h). Our results indicated that the pharmacokinetic of l-carnosine and d-carnosine revealed enantioselective properties significantly.  相似文献   

12.
Compared with liquid chromatography and capillary electrophoresis, the diversity of gas chromatography chiral stationary phases is rather limited. Here, we report the fabrication of Co(d-Cam)1/2(bdc)1/2(tmdpy) (d-Cam?=?d-camphoric acid; bdc?=?1,4-benzenedicarboxylate; tmdpy?=?4,4′-trimethylenedipyridine)-coated open tubular columns for high-resolution gas chromatographic separation of compounds. The Co(d-Cam)1/2(bdc)1/2(tmdpy) compound possesses a 3-D framework containing enantiopure building blocks embedded in intrinsically chiral topological nets. In this study, two fused-silica open tubular columns with different inner diameters and lengths, including column A (30 m?×?530 μm i.d.) and column B (2 m?×?75 μm i.d.), were prepared by a dynamic coating method using Co-(d-Cam)1/2(bdc)1/2(tmdpy) as the stationary phase. The chromatographic properties of the two columns were investigated using n-dodecane as the test compound at 120 °C. The number of theoretical plates (plates/m) of the two metal–organic framework columns was 1,450 and 3,100, respectively. The separation properties were evaluated using racemates, isomers, alkanes, alcohols, and Grob's test mixture. The limit of detection and limit of quantification were found to be 0.125 and 0.417 ng for citronellal enantiomers, respectively. Repeatability (n?=?6) showed lower than 0.25 % relative standard deviation (RSD) for retention times and lower than 2.2 % RSD for corrected peak areas. The experimental results showed that the stationary phase has excellent selectivity and also possesses good recognition ability toward these organic compounds, especially chiral compounds.
Figure
?  相似文献   

13.
Bifidobacterium longum NRRL B-41409 l-arabinose isomerase (l-AI) was cloned and overexpressed in Lactococcus lactis using a phosphate-depletion-inducible expression system. The purified B. longum l-AI was characterized using d-galactose and l-arabinose as the substrates. The enzyme was active and stable at acidic pH with an optimum at pH 6.0?C6.5. The enzyme showed the highest activity at 55?°C during a 20-min incubation at pH 6.5. The K m value was 120?mM for l-arabinose and 590?mM for d-galactose. The V max was 42?U mg?1 with l-arabinose and 7.7?U mg?1 with d-galactose as the substrates. The enzyme had very low requirement for metal ions for catalytic activity, but it was stabilized by divalent metal ions (Mg2+, Mn2+). The enzyme bound the metal ions so tightly that they could not be fully removed from the active site by EDTA treatment. Using purified B. longum l-AI as the catalyst at 35?°C, equilibrium yields of 36?% d-tagatose and 11?% l-ribulose with 1.67?M d-galactose and l-arabinose, respectively, as the substrates were reached.  相似文献   

14.
A new microemulsion electrokinetic chromatographic method has been established for separation and sensitive analysis of the three chlorophenols 2-chlorophenol, 4-chlorophenol, and 2,4-dichlorophenol. The optimum microemulsion system was 15 mM SDS, 112 mM n-butanol, and 10 mM n-octane in 20 mM sodium tetraborate (pH 9.0). Under the optimum conditions, baseline separation was achieved within 8 min. The method was used for analysis of a real water sample previously pretreated by SPE. The linear ranges, precision of migration time and peak area, and limits of detection (LOD) were in the ranges of 0.5–50 μg L?1, 4.85–9.75%, 0.49–0.706% (n = 6), and 0.6–1 μg L?1, respectively, for the three chlorophenols.  相似文献   

15.
A simple and accurate chiral liquid chromatographic method was developed for the enantiomeric purity determination of d-nateglinide and quantitative determination of l-nateglinide in bulk drug samples. Good resolution (R s  > 6.0) between d-enantiomer and l-enantiomer of nateglinide were achieved with Chiralpak AD-H (250 × 4.6 mm, 5 μm particle size) column using hexane and ethanol (90:10 v/v) as mobile phase at 25 °C temperature. Flow rate was kept as 1.0 mL min?1 and elution was monitored at 210 nm. The effects of the mobile phase composition, the flow rate and the temperature on the chromatographic separation were investigated. Developed method is capable to detect (LOD) and quantitate (LOQ) l-nateglinide to the levels of 0.3 and 1.0 μg mL?1 respectively, for 10 μL injection volume. The percentage RSD of the peak area of six replicate injections of l-nateglinide at LOQ concentration was 5.2. The percentage recoveries of l-nateglinide from d-nateglinide ranged from 97.9 to 99.7. The test solution and mobile phase was found to be stable up to 24 h after preparation. The developed method was validated with respect to LOD, LOQ, precision, linearity, accuracy, robustness and ruggedness.  相似文献   

16.
β-Aminopeptidases exhibit both hydrolytic and aminolytic (peptide bond formation) activities and have only been reported in bacteria. We identified a gene encoding the β-aminopeptidase homolog from a genome database of the filamentous fungus Aspergillus oryzae. The gene was overexpressed in A. oryzae, and the resulting recombinant enzyme was purified. Apart from bacterial homologs [β-Ala-para-nitroanilide (pNA)], the enzyme preferred d-Leu-pNA and d-Phe-pNA as substrates. Therefore, we designated this gene as d-stereoselective aminopeptidase A (damA). The purified recombinant DamA was estimated to be a hexamer and was composed of two subunits with molecular masses of 29.5 and 11.5 kDa, respectively. Optimal hydrolytic activity of DamA toward d-Leu-pNA was observed at 50 °C and pH 8.0. The enzyme was stable up to 60 °C and from pH 4.0–11.0. DamA also exhibited aminolytic activity, producing d-Leu-d-Leu-NH2 from d-Leu-NH2 as a substrate. In the presence of 3.0 M NaCl, the amount of pNA liberated from d-Leu-pNA by DamA was 3.1-fold higher than that in the absence of NaCl. Thus, DamA is a halophilic enzyme. The enzyme was utilized to synthesize several hetero-dipeptides containing a d-amino acid at the N-terminus as well as physiologically active peptides.  相似文献   

17.
A sensitive, simple and rapid LC–MS–MS method has been developed and validated for the simultaneous determination of l-dopa and l-dopa n-pentyl ester hydrochloride in rat plasma in the present study. The analytes were separated on a C18 column (5 μm, 2.1 × 150 mm) with a security guard C18 column (5 μm, 4 × 20 mm) and a triple-quadrupole mass spectrometer was applied for detection. The method was linear over the concentration ranges of 25–5,000 ng mL?1 for l-dopa and 12.5–2,500 ng mL?1 for l-dopa n-pentyl ester hydrochloride. Finally, the method was successfully applied to support the pharmacokinetic study.  相似文献   

18.
Biomorphic calcium phosphate (CaP) microspheres with hierarchical porous structure were synthesized using natural cole pollen grains as templates and were further employed for the immobilization of horseradish peroxidase (HRP). Scanning electron microscopy and Fourier transform infrared spectroscopy revealed (a) the porous structure of the CaP microspheres, (b) the effective immobilization, and (c) the retention of the conformation of HRP on CaP. The immobilized HRP was placed on a glassy carbon electrode where it underwent a direct, fully reversible, and surface-controlled redox reaction with an electron transfer rate constant of 1.96 s?1. It also exhibits high sensitivity to the reduction of H2O2. The response to H2O2 is linear in the 5.00 nM to 1.27 μM concentration range, and the sensitivity is 30357 μA?mM?1?cm?2. The detection limit (at an SNR of 3) is as low as 1.30 nM. The apparent Michaelis–Menten constant (K M app ) of the immobilized enzyme is 0.92 μM. This new CaP with hierarchical porous structure therefore represents a material that can significantly promote the direct electron transfer between HRP and an electrode, and is quite attractive with respect to the construction of biosensors.
Figure
Biomorphic calcium phosphate microspheres with hierarchical porous has been synthesized using natural cole pollen grains as templates and were further employed for the immobilization of horseradish peroxidase to construct biosensors with high sensitivity and selectivity.  相似文献   

19.
Glucose oxidase from Aspergillus niger, the specific enzyme for β-d-glucose oxidation, can also oxidize other related saccharides at very slow or negligible rates. The present study aimed to compare the kinetics of d-glucose oxidation using immobilized glucose oxidase on bead cellulose for the oxidation of related saccharides using the same biocatalyst. The significant differences were observed between the reaction rates for d-glucose and other saccharides examined. As a result, k cat/K M ratio for d-glucose was determined to be 42 times higher than d-mannose, 61.6 times higher than d-galactose, 279 times higher than d-xylose, and 254 times higher than for d-fructose and d-cellobiose. On the basis of these differences, the ability of immobilized glucose oxidase to remove d-glucose from d-cellobiose, d-glucose from d-xylose, and d-xylose from d-lyxose was examined. Immobilized catalase on Eupergit and mixed with immobilized glucose oxidase on bead cellulose or co-immobilized with glucose oxidase on bead cellulose was used for elimination of hydrogen peroxide from the reaction mixture. The accelerated elimination of d-glucose and d-xylose in the presence of co-immobilized catalase was observed. The co-immobilized glucose oxidase and catalase were able to decrease d-glucose or d-xylose content to 0–0.005% of their initial concentrations, while a minimum decrease of low oxidized saccharides d-xylose, d-cellobiose, and d-lyxose, respectively, was observed.  相似文献   

20.
Extracellular tyrosinase from Auricularia auricula RF201 was purified in a three-step procedure involving ammonium sulfate precipitation, Sephadex G-100, and DEAE-Sepharose column chromatography. The partially purified enzyme showed a single protein band of 12.6 kDa on SDS-PAGE. The optimum pH for tyrosinase activity was 7, and the enzyme was stable between pH 6 and 9. Tyrosinase has optimal activity at 40 °C and retained most of its activity between 4 and 50 °C. A. auricula tyrosinase could oxidize l-tyrosine, l-DOPA, catechol, and caffeic acid and displayed dark brown or peach color. However, the enzyme was unable to catalyze l-phenylalanine and ferulic acid. In comparison with other substrates, l-tyrosine displayed the highest affinity (K m of 0.11 mM) and the maximal reaction velocity (V max of 102.58 μmol/min). Tyrosinase activity was reduced in the presence of numerous tested compounds. Particularly SDS, it significantly inhibited enzyme activity. CuSO4 and NaCl showed an activation effect on enzyme activity, with the maximum activation found in the presence of CuSO4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号