首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Single-strand DNA could bind with chitosan on a platinum electrode via forming a tight DNA-chitosan complex. The salt concentration of the ssDNA solution had an obvious effect on the surface coverage, the immobilization was remarkably reduced at high salt concentration. The sample ssDNA immobilized on the chitosan-modified electrode can hybridize efficiently with the complementary sequences and be successfully used for the sequence-specific DNA detection. The same results could be obtained using a gold or graphite electrode modified with chitosan. The stability of this electrode has been also discussed.  相似文献   

2.
利用自组装法将巯基修饰的DNA探针与6-巯基-1-己醇(MCH)固定到金电极表面,制备了微囊藻属特定DNA传感器,将该传感器与完全互补的微囊藻DNA序列、完全不互补序列,以及单碱基错配序列进行杂交,以Hoechst 33258为杂交指示剂,应用循环伏安法和线性扫描伏安法研究了该传感器对目标DNA的电化学检测行为.研究表明,当与完全互补DNA杂交后,Hoechst 33258氧化信号有明显的增强.实验对自组装时间、MCH浸泡时间及杂交液离子浓度进行了优化.结果表明,当自组装时间为90 min,MCH浸泡时间为1 h,杂交溶液中NaCl浓度为0.3 mol/L时,电化学信号最好.目标DNA的氧化峰电流值与其浓度在1×10~(-8) ~1×10~(-6) mol/L范围内呈良好的线性关系,检出限为8.1×10~(-9) mol/L.  相似文献   

3.
本研究以电化学聚合法制备了聚苯胺掺杂乙醇胺修饰电极,并成功固定了DNA探针。文中对修饰电极的制备和DNA的固定杂交条件进行了探讨,并利用循环伏安法测定嵌入双链DNA(dsDNA)分子碱基对中的亚甲基蓝的氧化还原峰电流,识别和测定溶液中互补的单链DNA(ssDNA)片段,从而实现对溶液中不同基因片段的检测。  相似文献   

4.
Bo Y  Wang W  Qi J  Huang S 《The Analyst》2011,136(9):1946-1951
A chemically modified graphene paste electrode was prepared by incorporating appropriate amounts of graphene in a paste mixture, followed by electrodepositing Prussian blue (PB) and coating chitosan on the electrode surface. The electrode was able to bind ssDNA, and gave a better voltammetric response for complement DNA than did ordinary carbon paste electrodes. The response of the electrode was characterized with respect to the paste composition, immobilization time of probe DNA on the chitosan and PB modified graphene paste electrode, and the effect of 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide hydrochloride (EDC). The electrochemical behavior of PB assembled on the graphene paste electrode was investigated. The combination of graphene and PB can enhance the current response of the graphene paste electrode. As a consequence of DNA hybridization, a significant change in the current due to daunomycin intercalated with double-stranded DNA (ds-DNA) on the surface of the graphene paste electrode was observed.  相似文献   

5.
Xu C  Cai H  He P  Fang Y 《The Analyst》2001,126(1):62-65
The electrochemical detection of sequence-specific DNA using a DNA probe labeled with aminoferrocene (AFC) is reported. Sample ssDNA was immobilized on a chitosan modified glassy carbon electrode. A sequence-known DNA with 256 bp [obtained by polymerase chain reaction (PCR)] was successfully labeled with the electro-active reagent AFC by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide for the first time. This DNA probe labeled with AFC was applied to hybridize with a sequence-unknown DNA sample. Only the complementary sequence (cDNA) could form a double-stranded DNA (dsDNA) with the DNA probe labeled with AFC. The anodic peak currents (ipa) of the AFC bound to the dsDNA by differential pulse voltammetry were used for the determination of cDNA. The ipa of AFC was linearly related to the concentration of cDNA sequence between 1.0 x 10(-8) and 6.0 x 10(-6) mol L-1. The detection limit was 2.0 x 10(-9) mol L-1 using 3 sigma (where sigma is the standard deviation of blank solution, n = 11). The probe showed high sensitivity and selectivity.  相似文献   

6.
Based on graphene (GR), TiO2 nanorods, and chitosan (CTS) nanocomposite modified carbon ionic liquid electrode (CILE) as substrate electrode, a new electrochemical DNA biosensor was effectively fabricated for the detection of the transgenic soybean sequence of MON89788. By using methylene blue (MB) as hybridization indicator for monitoring the hybridization with different ssDNA sequences, the differential pulse voltammetric response of MB on DNA modified electrodes were recorded and compared. Due to the synergistic effects of TiO2 nanorods and GR on the electrode surface, the electrochemical responses of MB were greatly increased. Under optimal conditions the differential pulse voltammetric response of the target ssDNA sequence could be detected in the range from 1.0×10?12 to 1.0×10?6 mol/L with a detection limit of 7.21×10?13 mol/L (3σ). This electrochemical DNA biosensor was further applied to the polymerase chain reaction (PCR) product of transgenic soybeans with satisfactory results.  相似文献   

7.
In this article, interactions between Bacillus subtilis single-stranded DNA binding proteins (BsSSB) and single-stranded DNA (ssDNA) were systematically studied. The effect of different molar ratios between BsSSB and ssDNA on their binding modes was first investigated by electrophoretic mobility shift assays (EMSAs). It is found that a high molar ratio of BsSSB to ssDNA can produce BsSSB-ssDNA complexes formed in the mode of two proteins binding one 65-nt (nucleotide) ssDNA whereas a low molar ratio facilitates the formation of BsSSB-ssDNA complexes in the mode of one protein binding one 65-nt ssDNA. Furthermore, two binding modes are in dynamic equilibrium. The unbinding force of BsSSB-ssDNA complexes was measured quantitatively in solutions with different salt concentrations by using AFM-based single-molecule force spectroscopy (SMFS). Our results show that the unbinding force is about 10 pN higher at high salt concentration (0.5 M NaCl) than at low salt concentration (0.1 M NaCl) and the lifetime of BsSSB-ssDNA complexes at high salt concentration is twice as long as that at low salt concentration. These results indicate that more tightly packed BsSSB-ssDNA complexes can form at high salt (0.5 M NaCl) concentration. In addition, the results of EMSA show that ssDNA, which is bound to BsSSB, can dissociate from BsSSB in the presence of the cDNA strand, indicating the dynamic nature of BsSSB-ssDNA interactions.  相似文献   

8.
Xiaoyu Cao 《Mikrochimica acta》2014,181(9-10):1133-1141
We have developed an ultra-sensitive electrochemical DNA biosensor by assembling probe ssDNA on a glassy carbon electrode modified with a composite made from molybdenum disulfide, graphene, chitosan and gold nanoparticles. A thiol-tagged DNA strand coupled to horseradish peroxidase conjugated to AuNP served as a tracer. The nanocomposite on the surface acts as relatively good electrical conductor for accelerating the electron transfer, while the enzyme tagged gold nanoparticles provide signal amplification. Hybridization with the target DNA was studied by measuring the electrochemical signal response of horseradish peroxidase using differential pulse voltammetry. The calibration plot is linear in the 5.0?×?10?14 and 5.0?×?10?9 M concentration range, and the limit of detection is 2.2?×?10?15 M. The biosensor displays high selectivity and can differentiate between single-base mismatched and three-base mismatched sequences of DNA. The approach is deemed to provide a sensitive and reliable tool for highly specific detection of DNA.
Figure
We have developed an ultra-sensitive electrochemical DNA biosensor by assembling probe (ssDNA) on a glassy carbon electrode modified with a composite made from molybdenum disulfide, graphene, chitosan and gold nanoparticles. The nanocomposite on the surface acts as relatively good electrical conductor for accelerating the electron transfer, while the enzyme tagged gold nanoparticles provide signal amplification. The biosensor displays high selectivity and can differentiate between single-base mismatched and three-base mismatched sequences of DNA  相似文献   

9.
《Electroanalysis》2002,14(24):1685-1690
A chitosan modified carbon paste electrode (ChiCPE) based DNA biosensor for the recognition of calf thymus double stranded DNA (dsDNA), single stranded DNA (ssDNA) and hybridization detection between complementary DNA oligonucleotides is presented. DNA and oligonucleotides were electrostatically attached by using chitosan onto CPE. The amino groups of chitosan formed a strong complex with the phosphate backbone of DNA. The immobilized probe could selectively hybridize with the target DNA to form hybrid on the CPE surface. The detection of hybridization was observed by using the label‐free and label based protocols. The oxidation signals of guanine and adenine greatly decreased when a hybrid was formed on the ChiCPE surface. The changes in the peak currents of methylene blue (MB), an electroactive label, were observed upon hybridization of probe with target. The signals of MB were investigated at dsDNA modified ChiCPE and ssDNA modified ChiCPE and the increased peak currents were observed, in respect to the order of electrodes. The hybridization of peptide nucleic acid (PNA) probes with the DNA target sequences at ChiCPE was also investigated. Performance characteristics of the sensor were described, along with future prospects.  相似文献   

10.
《Electroanalysis》2006,18(9):873-881
In this paper, we present an impedance‐based DNA biosensor using thionine intercalation to amplify DNA hybridization signal. Beacon single‐stranded DNA (ssDNA) probe and mercaptoacetic acid were self‐assembled onto a Au electrode by forming Au? S bonds. These beacon ssDNAs were hybridized with the complementary sequences around the loop structure. Then thionine was intercalated into the double‐stranded DNA (dsDNA) immobilized on the Au electrode surface. Due to the neutralization of the negative charges of dsDNA by the intercalated thionine, the electronic transfer resistance (Ret) of the DNA modified Au electrode was significantly diminished. Herein, the decreased value of Ret resulted from the thionine intercalating into dsDNA was employed as the hybridization signal. SDS was used to reduce the unspecific adsorption between ssDNA and thionine. Several experimental conditions, including the surface coverage of ssDNA probe on Au electrode, the hybridization temperature and time were all optimized. Moreover, the hybridization reactions of the unstructured linear ssDNA probe and the structured beacon ssDNA probe with their complementary sequences were compared in this work. The sensitivity of the presented DNA biosensor highlighted that the intercalation of thionine into dsDNA was an efficient approach to amplify the hybridization signal using impedance detection technique. Additionally, in this DNA biosensing protocol, beacon ssDNA has a good ability to distinguish target DNA sequences. This results in a higher specificity than using traditional unstructured DNA probe.  相似文献   

11.
We use colloidal Au to enhance the DNA immobilization amount on a gold electrode and ultimately lower the detection limit of our electrochemical DNA biosensor. Self-assembly of approximately 16-nm diameter colloidal Au onto a cysteamine modified gold electrode resulted in an easier attachment of an oligonucleotide with a mercaptohexyl group at the 5′-phosphate end, and therefore an increased capacity for nucleic acid detection. Quantitative results showed that the surface densities of oligonucleotides on the Au colloid modified gold electrode were approximately (1–4)×1014 molecules cm−2. Hybridization was induced by exposure of the ssDNA-containing gold electrode to ferrocenecarboxaldehyde labeled complementary ssDNA in solution. The detection limit is 5×10−10 mol l−1 of complementary ssDNA, which is much lower than our previous electrochemical DNA biosensors. The Au nanoparticle films on the Au electrode provide a novel means for ssDNA immobilization and sequence-specific DNA detection.  相似文献   

12.
以乙二胺为手臂分子制备的DNA修饰电极及其伏安性能   总被引:5,自引:0,他引:5  
Carboxyl was formed on the surface of glassy carbon electrode(GCE) by electrochemical oxidation. Ethylenediamine(En) was used as the arm molecule to link carboxyl with dsDNA using 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide hydrochloride (EDC) and N- hydroxysuccinimide (NHS) as the activators to prepare dsDNA modified electrode(dsDNA/En/GCE). It was shown that dsDNA couM be covalently immobilized on the surface of GCE. ssDNA modified electrode(ssDNA/En/GCE) was obtained via the thermal denaturation of dsDNA/En/GCE. The dsDNA/En/GCE and ssDNA/En/GCE were characterized by voltammetry with methylene blue(MB) as the indicator. The results indicated that the currents of the redox peaks of MB at ssDNA/En/GCE were larger than those at dsDNA/En/GCE, and the currents of the redox peaks at En/GCE were the smallest. The peak-currents of MB at the DNA modified electrode had good reproducibility after multi-denaturation and hybridization cycles.  相似文献   

13.
卜扬  杨清  孟琦  胡赢  黄杉生 《化学学报》2010,68(7):672-678
利用新型材料金纳米空球, 通过层层修饰的技术, 分别将壳聚糖、空壳纳米金、L-半胱氨酸、细胞色素c以及ssDNA探针修饰到玻碳电极表面, 制备了一种新型的DNA生物传感器. 以紫外及透射电子显微镜(TEM)表征了空壳纳米金, 以循环伏安法、阻抗谱图等电化学方法研究了传感器的特性, 通过原子力显微镜方法观察了该DNA生物传感器不同层之间的形态差异. 结果表明, 该修饰电极所吸附的ssDNA探针为1.672×10―10 mol•cm-2. 在指示剂柔红霉素的帮助下, DNA探针可与互补的DNA进行杂交, 借此以微分脉冲伏安法测定DNA.  相似文献   

14.
灿烂甲酚蓝在DNA修饰金电极上的电化学行为   总被引:1,自引:0,他引:1  
利用自组装技术将巯基乙醇固定在金电极表面形成巯基乙醇自组装膜修饰金电极, 用乙基-(3-二甲基氨丙基)碳二亚胺盐酸盐(EDC)和N-羟基琥珀酰亚胺(NHS)为偶联试剂, 分别将鲱鱼精单链DNA(ssDNA)和双链DNA(dsDNA)固定于金电极表面形成ssDNA和dsDNA 修饰电极. 考察了灿烂甲酚蓝(BCB)在不同DNA 修饰电极上的电化学行为,结果表明, BCB 在ssDNA 和dsDNA 修饰电极上的吸附常数分别为1.67×10^4和3.22×10^4 L·mol-1, BCB 与ssDNA 主要以静电作用结合, 而与dsDNA作用存在静电和嵌插两种模式. dsDNA 对BCB 具有更高的亲和力, 使BCB 可以作为一种有效的电化学杂交指示剂.  相似文献   

15.
DNA separation by fragment length can be readily achieved using sieving gels in electrophoresis. Separation by sequence has not been as simple, generally requiring adequate differences in native or induced conformation between single or hybridized strands or differences in thermal or chemical stability of hybridized strands. Previously, it was shown that four single‐stranded DNA (ssDNA) 76‐mers that differ by only a few A‐G substitutions could be separated based solely on sequence by adding guanosine‐5’‐monophosphate to the running buffer in capillary zone electrophoresis (CZE). The separation was attributed to interactions of the ssDNA with self‐assembled guanine‐tetrad structures; however, subsequent studies of an expanded set of ten 76‐mers showed that the separation was a more general phenomenon that occurred at high salt concentrations. With the long‐term goal of using experimental and computational methods to provide insight into the basis of the separation, a set of ssDNA 15‐mers was designed including a poly(dT) 15‐mer and nine variants. Separations were performed using fluorescent‐labeled ssDNA in CZE with laser‐induced fluorescence detection. Results show that separation improves with increasing buffer concentration and decreasing temperature, due at least in part to longer separation times. Migration times increase with increasing purine content, with A having a much larger effect that G. Circular dichroism spectra of the mixtures of the strands suggest that the separation is not due to changes in conformation of the ssDNA at high salt concentrations.  相似文献   

16.
Electrochemical DNA biosensors, based either on carbon paste electrode (CPE) or hanging mercury drop electrode (HMDE) were prepared. These biosensors were used in the study of interaction between double stranded DNA (dsDNA) and single stranded DNA (ssDNA) and acridine orange, a well known DNA intercalator. The different electrochemical behaviors were compared in the article.  相似文献   

17.
Visible spectroscopic and electrochemical methods were used to study the interactions between DNA and fuchsin basic(FB). FB has an irreversible electro-oxidation peak in 5 mmol/L Tris-HCl buffer solution at pH = 7.4 on a glassy carbon electrode(GCE). After adding certain concentration of dsDNA, the oxidation peak current of FB decreases, but the peak potential hardly changs. The visible absorption spectroscopic study shows that the binding mode of FB to dsDNA is intercalative binding and electrostatic binding when the ratio of the concentration of dsDNA to FB is smaller than 0. 2, and a new substance, which produces a new absorption peak, is obtained via a covalent binding between dsDNA and FB apart from intercalative binding and electrostatic binding when the ratio of the concentration of dsDNA to FB is larger than 0. 2. The visible absorption spectra varies no longer when the ratio of the concentration of dsDNA to FB is larger than 1.5. A mean binding ratio of dsDNA to FB was determined to be 1.4: 1,suggesting that two complexes FB-dsDNA and FB-2dsDNA be formed. The interaction between FB and ssDNA was only electrostatic binding. The more powerful interaction of FB with dsDNA than with ssDNA may be applied for the recognition of dsDNA and ssDNA, and in DNA biosensor as hybridization indicator.  相似文献   

18.
Described here are the chronocoulometric and voltammetric parameters for methylene blue [3,7-bis(dimethylamino)phenothiazin-5-ium chloride, MB] on binding to DNA at carbon paste electrode (CPE) surface. MB, which interacts with the immobilized calf thymus DNA was detected by using single stranded DNA modified CPE (ssDNA modified CPE), bare CPE and double stranded DNA modified CPE (dsDNA modified CPE) in combination with chronocoulometry and differential pulse voltammetry (DPV) techniques. The effect of ionic strength to the behavior of MB with dsDNA and ssDNA was also studied by means of voltammetry. These results demonstrated that MB could be used as an effective electroactive hybridization indicator for DNA biosensors. Performance characteristics of the sensor are described, along with future prospects.  相似文献   

19.
Electrogenerated chemiluminescence (ECL) for DNA hybridization detection is demonstrated based on DNA that was self-assembled onto a bare gold electrode and onto a gold nanoparticles modified gold electrode. A ruthenium complex served as an ECL tag. Gold nanoparticles were self-assembled on a gold electrode associated with a 1,6-hexanedithiol monolayer. The surface density of single stranded DNA (ssDNA) on the gold nanoparticle modified gold electrode was 4.8?×?1014 molecules per square centimeter which was 12-fold higher than that on the bare gold electrode. Hybridization was induced by exposure of the target ssDNA gold electrode to the solution of ECL probe consisting of complementary ssDNA tagged with ruthenium complex. The detection limit of target ssDNA on a gold nanoparticle modified gold electrode (6.7?×?10?12 mol L?1) is much lower than that on a bare gold electrode (1.2?×?10?10 mol L?1). The method has been applied to the detection of the DNA sequence related to cystic fibrosis. This work demonstrates that employment of gold nanoparticles self-assembled on a gold electrode is a promising strategy for the enhancement of the sensitivity of ECL detection of DNA.  相似文献   

20.
This study describes a simple and label-free electrochemical impedance spectroscopic (EIS) method for sequence-specific detection of DNA by using single-walled carbon nanotubes (SWNTs) as the support for probe DNA. SWNTs are confined onto gold electrodes with mixed self-assembly monolayers of thioethanol and cysteamine. Single-stranded DNA (ssDNA) probe is anchored onto the SWNT support through covalent binding between carboxyl groups at the nanotubes and amino groups at 5′ ends of ssDNA. Hybridization of target DNA with the anchored probe DNA greatly increases the interfacial electron-transfer resistance (Ret) at the double-stranded DNA (dsDNA)-modified electrodes for the redox couple of Fe(CN)63−/4−, which could be used for label-free and sequence-specific DNA detection. EIS results demonstrate that the utilization of SWNTs as the support for probe DNA substantially increases the surface loading of probe DNA onto electrode surface and thus remarkably lowers the detection limit for target DNA. Under the conditions employed here, Ret is linear with the concentration of target DNA within a concentration range from 1 to 10 pM with a detection limit down to 0.8 pM (S/N = 3). This study may offer a novel and label-free electrochemical approach to sensitive sequence-specific DNA detection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号