首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A rapid method was developed for the analysis of the insecticide (A) diazinon (O,O-diethyl O-2-isopropyl-6-methylpyridimidinyl) phosphorothioate, its metabolites (B) diazoxon (O,O-diethyl O-2-isopropyl-6-methylpyridimidinyl) phosphate, and (C) 2-isopropyl-6-methyl-4-pyrimidinol, the insecticide (D) permethrin [3-(2,2-dichloro-ethenyl)-2,2-dimethylcyclopropanecarboxylic acid (3-phenoxyphenyl)methylester], its metabolites (E) m-phenoxybenzyl alcohol, and (F) m-phenoxybenzoic acid, the insect repellent (G) DEET (N,N-diethyl-m-toluamide), and its metabolites (H) m-toluamide and (I) m-toluic acid in rat plasma and urine. The method is based on using C18 Sep-Pak cartridges (Waters Corporation, Milford, Mass., U.S.A.) for solid phase extraction and high performance liquid chromatography with a reversed phase C18 column, and absorbance detection at 230 nm for compounds A, B, and C, and at 210 nm for compounds D-I. The compounds were separated using a gradient from 1% to 99% acetonitrile in water (pH 3.0) at a flow rate ranging between 1 and 1.7 mL/min in a period of 17 min. The limits of detection were ranged between 20 and 100 ng/mL, while limits of quantification were 80-200 ng/mL. The relationship between peak areas and concentration was linear over a range of 100-1000 ng/mL. This method was applied to determine the above insecticides and their metabolites following dermal administration in rats.  相似文献   

2.
This study reports a simple and rapid high-performance liquid chromatographic (HPLC) method for the determination of the insecticide diazinon (O,O-diethyl-O[2-isopropyl-6-methylpyridimidinyl] phosphorothioate), its metabolites diazoxon (O,O-diethyl-O-2-isopropyl-6-methylpyridimidinyl phosphate) and 2-isopropyl-6-methyl-4-pyrimidinol, the insecticide chlorpyrifos (O,O-diethyl-O[3,5,6-trichloro-2-pyridinyl] phosphorothioate) and its metabolites chlorpyrifos-oxon (O,O-diethyl-O[3,5,6-trichloro-2-pyridinyl] phosphate), and TCP (3,5,6-trichloro-2-pyridinol) in rat plasma and urine samples. The method is based on using C18 Sep-Pak cartridges for solid-phase extraction and HPLC with a reversed-phase C18 column and programmed UV detection ranging between 254 and 280 nm. The compounds are separated using a gradient of 1% to 80% acetonitrile in water (pH 3.0) at a flow rate ranging between 1 and 1.5 mL/min in a period of 16 min. The limits of detection ranged between 50 and 150 ng/mL, and the limits of quantitation were 100 to 200 ng/mL. The average percentage recovery of five spiked plasma samples were 86.3 +/- 8.6, 77.4 +/- 7.0, 82.1 +/- 8.2, 81.8 +/- 8.7, 73.1 +/- 7.4, and 80.3 +/- 8.0 and from urine were 81.8 +/- 7.6, 76.6 +/- 7.1, 81.5 +/- 7.9, 81.8 +/- 7.1, 73.7 +/- 8.6, and 80.7 +/- 7.7 for diazinon, diazoxon, 2-isopropyl-6-methyl-4-pyrimidinol, chlorpyrifos, chlorpyrifos-oxon, and TCP, respectively. The relationship between the peak area and concentration was linear over a range of 200 to 2,000 ng/mL. This method was applied in order to analyze these chemicals and metabolites following dermal administration in rats.  相似文献   

3.
We developed an isotopic dilution high-performance liquid chromatography (HPLC)/tandem mass spectrometer (MS/MS) method to rapidly and accurately quantify nine metabolites of several classes of pesticide in 1 mL human urine specimens. The analytes covered in the method are two organophosphate (OP) pesticide metabolites: 3,5,6-trichloro-2-pyridinol (TCPy), 2-isopropyl-6-methyl-4-pyrimidinol (IMPY); three synthetic pyrethroid metabolites: 3-phenoxy benzoic acid (3-PBA), 4-fluoro-3-phenoxybenzoic acid (4-F-3-PBA) and trans-3-(2,2-dichlorovinyl)-2,2-dimethyl-1(1-cyclopropane) carboxylic acid (t-DCCA); three herbicide metabolites: 2,4-dichlorophenoxyacetic acid (DCPAA), 2,4,5-trichlorophenoxyacetic acid (TCPAA) and atrazine mercapturate; and one insect repellent: N,N-diethyl-meta-toluamide (DEET). The analytes are first deconjugated by incubating with acetate/β-glucuronidase buffer at 37°C for 17 h. The deconjugated analytes are extracted and concentrated from the urine matrix using solid-phase extraction cartridges, separated through C18 reversed phase HPLC, and analysed on MS/MS. The MS/MS was operated in positive and negative electrospray ionisation switch mode. Two ions from each analyte and one from each labelled internal standard are monitored for quantification and confirmation. The limit of detections (LODs) for all the analytes are in the low parts-per-trillion (0.05 ng/mL) except TCPy where it was 0.5 ng/mL) with a wide linear range (0.05 up to 40 ng/mL) and provides high accuracy (recoveries: 90–118%) and high precision (coefficient of variation <15%). The method accuracy was also verified by the analysis of proficiency testing urine samples. We analysed 101 urine samples for a recent California study cohort, and detection frequencies ranged from ~100% to 0%: 3-PBA (98%), IMPY (91%), TCPy, (89%), DCPAA (66%), 4-F-3-PBA (11%), TCPAA (0%).  相似文献   

4.
《Tetrahedron》2019,75(25):3463-3471
Six new compounds, named conoideoglucosides A − C and conoideochromanes A − C, together with eight known compounds, including eutypinic acid, 2,2-dimethyl-2H-1-chromene-6-carboxylic acid, (−)-luteoskyrin, (−)-4a-oxyluteoskyrin, chrysophanol, islandicin, catenarin, and (22E)-5α,8α-epidioxyergosta-6,22-dien-3β-ol were isolated from the insect fungus Conoideocrella krungchingensis BCC53666. (−)-Luteoskyrin exhibited a broad range of antimicrobial activity such as antimalarial (IC50 0.51 μg/mL), antitubercular (MIC 6.25 μg/mL), antibacterial (both Gram positive; MIC 0.39–1.56 μg/mL and Gram negative; MIC 3.13–12.50 μg/mL), and antifungal (against various plant pathogens; MIC 3.13–50.00 μg/mL) activities, while (−)-4a-oxyluteoskyrin and catenarin showed weaker antibacterial activity. Moreover, eutypinic acid, (−)-luteoskyrin, (−)-4a-oxyluteoskyrin, and catenarin showed cytotoxicity against NCI-H187 cells with IC50 in a range of 0.16–17.99 μg/mL, while eutypinic acid and catenarin had no cytotoxicity against non-cancerous (Vero) cells at maximum tested concentration (50 μg/mL). The complete NMR spectral data and biological activity of the known (−)-4a-oxyluteoskyrin was also reported for the first time.  相似文献   

5.
Pyrethroid insecticides are applied in the residential environment, as well as in agricultural crops, for insect control purpose. We developed and validated an accurate, sensitive, and reproducible analytical method to simultaneously detect seven pyrethroid metabolites, namely, 3‐(2,2‐dichlorovinyl)‐2,2‐dimethyl‐(1‐cyclopropane) carboxylic acid, 3‐(2,2‐dibromovinyl)‐2,2‐dimethyl‐(1‐cyclopropane) carboxylic acid, 3‐phenoxybenzoic acid, 4‐fluoro‐3‐phenoxybenzoic acid, 2‐methyl‐3‐phenylbenzoic acid, 4‐chloro‐α‐isoproply benzeneacetic acid, and 3‐(2‐chloro‐3,3,3‐trifluoroprop‐1‐enyl)‐2,2‐dimethylcyclopropanecarboxylic acid, in human urine. This method employs deconjugation with enzyme, SPE using Agilent C18 cartridges on a RapidTrace SPE workstation, derivatization using hexafluoro isopropanol and N,N′‐diisopropylcarbodiimide, and compounds separation and identification on GC–MS. The detection limits of seven metabolites were 0.02–0.08 ng/mL in urine. The recoveries of seven metabolites were 81–104%, 85–99%, and 83–99% in urine specimens fortified at 0.1, 0.4, and 3.2 ng/mL concentrations, respectively. The overall coefficient of variation was 4.3–10.8% in two quality control specimens which were repeatedly measured during a period of 2 months. This method was applied to urine samples collected from children living in Boston, MA. The median concentrations of six detected pyrethroid metabolites ranged from 0.06 to 0.86 ng/mL in urine.  相似文献   

6.
A fast, sensitive, and high‐throughput ultra‐HPLC–MS/MS method has been developed and validated for the simultaneous determination of three main active constituents of Euphorbiae pekinensis Radix in rat plasma. After addition of the internal standard, plasma samples were extracted by liquid–liquid extraction with ethyl acetate/isopropanol (1:1, v/v) and separated on a CAPCELL PAK C18 column (100 × 2.0 mm, 2 μm, Shiseido, Japan), using a gradient mobile phase system of methanol/water. The detection of the analytes was performed on a 4000Q UHPLC–MS/MS system with turbo ion spray source in the negative ion and multiple reaction‐monitoring mode. The linear range was 1.0–1000 ng/mL for 3,3′‐di‐O‐methyl ellagic acid‐4′‐Oβ‐d ‐glucopyranoside (i), 1.5–1500 ng/mL for 3,3′‐di‐O‐methyl ellagic acid‐4′‐Oβ‐d ‐xylopyranoside (ii), and 5.0–5000 ng/mL for 3,3′‐di‐O‐methyl ellagic acid (iii). The intra‐ and interday precision and accuracy of all the analytes were within 15%. The extraction recoveries of the three analytes and internal standard from plasma were all more than 80%. The validated method was first successfully applied to the evaluation of pharmacokinetic parameters of compounds 1 , 2 , and 3 in rat plasma after intragastric administration of the Euphorbiae pekinensis Radix extract.  相似文献   

7.
An analytical method was developed to measure cis-permethrin and trans-permethrin in different biological rat matrices and fluids (whole blood, red blood cells, plasma, brain, liver, muscle, testes, kidneys, fat and faeces). The method was also suitable for the simultaneous quantification of their associated metabolites [cis-3-(2,2-dichlorovinyl)-2,2-dimethyl-(1-cyclopropane) carboxylic acid (cis-DCCA), trans-3-(2,2-dichlorovinyl)-2,2-dimethyl-(1-cyclopropane) carboxylic acid (trans-DCCA) and 3-phenoxybenzoic acid (3-PBA)] in blood (whole blood, red blood cells, plasma) and liver. The target analytes were derivatised in samples using a methanolic/hydrochloric acid solution and then extracted with toluene. The analysis was performed by gas chromatography, and detection using ion trap tandem mass spectrometry. The selectivity obtained for complex matrices such as rat organs allowed the use of a purification step to be avoided for most of the matrices investigated. In the case of fat, where permethrin is suspected to accumulate, a dedicated purification step was developed. In fluids, the limits of quantification were at the 50 ng/mL level for the parent compounds and 3-PBA and at 25 ng/mL for cis-DCCA and trans-DCCA. For solid matrices excluding fat, the limits of quantification ranged from 50 ng/g for muscle to 100 ng/g for brain and testes for both cis-permethrin and trans-permethrin. The extraction recoveries ranged primarily between 80 and 120 % for the matrix tested. The stability of blood samples was tested through the addition of 1 % v/v formic acid. The methods developed were applied in a toxicokinetic study in adult rats. cis-Permethrin and the metabolites were detected in all corresponding matrices, whereas trans-permethrin was detected only in blood, plasma and faeces.  相似文献   

8.
Abivertinib represents a highly selective irreversible epidermal growth factor receptor tyrosine kinase inhibitor. Two major metabolites of abivertinib, M7 and MII-6, were detected in human plasma, which are recommended to be monitored for safety reasons in clinical trial. A high-throughput quantification method utilizing liquid chromatography–tandem mass spectrometry was designed and verified to quantify abivertinib's primary metabolites in human plasma. Solid-phase extraction was used to process the plasma, and then the analytes underwent a gradient elution separation in an Aquity UPLC BEH C18 column (1.7 μm, 2.1 × 50 mm) with mobile phase A (10 mm ammonium acetate containing 0.1% formic acid) and mobile phase B (methanol–acetonitrile, 2:8, v/v, with 0.1% formic acid). Ion transitions of M7 (m/z 490.2 → 405.1) and MII-6 (m/z 476.2 → 391.1) were monitored under multiple reaction monitoring mode and electrospray ionization in positive ion mode. This simultaneous determination method was found to have acceptable precision, accuracy and linearity in the 0.5–500 ng/mL range for M7 and the 0.5–500 ng/mL range for MII-6, accompanied by a mild matrix effect but high recovery. Further stability assessments indicated that both analytes remained stable throughout the entire experimental process from harvesting whole blood to plasma extraction and analysis.  相似文献   

9.
Mass spectra of previously unknown isomeric 1-isopropyl-3-methoxy-2-methylsulfanylpyrrole, 5-methoxy-2,2-dimethyl-6-methylsulfanyl-2,3-dihydropyridine, and 3-methoxy-7-methyl-2-methylsulfanyl-4,5-dihydro-3H-azepine were studied for the first time. Fragmentation of all heterocyclic compounds under electron impact begins with elimination of methyl radical, and the subsequent decomposition of the [M ? Me]+ ion (m/z 170) is specific for each isomers, which ensures their reliable identification in reaction mixtures. The corresponding linear precursors, methyl N-isopropyl-2-methoxybuta-2,3-dienimidothioate and 2-methoxy-N-(1-methylethylidene)-1-methylsulfanylbuta-1,3-dien-1-amine undergo isomerization and decomposition even under very mild temperature conditions, so that their mass spectra could not be recorded.  相似文献   

10.
An LC‐MS/MS method was developed for the first time to simultaneously determine hyperoside and 2′′–O‐galloylhyperin, two major components in Pyrola calliantha extract, in rat plasma. Following extraction by one‐step protein precipitation with methanol, the analytes were separated on a Venusil MP‐C18 column within 2 min, using methanol–water–formic acid (50:50:0.1, v/v/v) as the mobile phase at a flow rate of 0.4 mL/min. Detection was performed on electrospray negative ionization mass spectrometry by multiple‐reaction monitoring of the transitions of 2′′–O‐galloylhyperin at m/z 615.1 → 301.0, of hyperoside at m/z 463.1 → 300.1, and of internal standard at m/z 415.1 → 295.1. The limits of quantification were 2 ng/mL for both hyperoside and 2′′–O‐galloylhyperin. The precisions were <13.1%, and the accuracies were between ?9.1 and 5.5% for both compounds. The method was successfully applied in pharmacokinetic studies following intravenous administration of the total flavonoids of P. calliantha extract in rats. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
A liquid chromatography–electrospray–mass spectrometry method (LC/MS) has been developed and validated for determination of praziquantel (PZQ), pyrantel (PYR), febantel (FBT), and the active metabolites fenbendazole (FEN) and oxfendazole (OXF), in dog plasma, using mebendazole as internal standard (IS). The method consists of solid‐phase extractions on Strata‐X polymeric cartridges. Chromatographic separation was carried out on a Phenomenex Gemini C6‐Phenyl column using binary gradient elution containing methanol and 50 mm ammonium–formate (pH 3). The method was linear (r2 ≥ 0.990) over concentration ranges of 3–250 ng/mL for PYR andFEB, 5–250 ng/mL for OXF and FEN, and 24–1000 ng/mL for PZQ. The mean precisions were 1.3–10.6% (within‐run) and 2.5–9.1% (between‐run), and mean accuracies were 90.7–109.4% (within‐run) and 91.6–108.2% (between‐run). The relative standard deviations (RSD) were <9.1%. The mean recoveries of five targeted compounds from dog plasma ranged from 77 to 94%.The new LC/MS method described herein was fully validated and successfully applied to the bioequivalence studies of different anthelmintic formulations such as tablets containing PZQ, PYR embonate and FBT in dogs after oral administration. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
A simple, rapid, accurate and sensitive method using microextraction by packed sorbent (MEPS) followed by GC–MS has been pursued for the determination of organochlorine insecticide endosulfan isomers (α and β) and their metabolites (ether, lactone and sulfate). MEPS is a miniaturised version of SPE employing C18 packing material. It is very efficient technique as it employs as low as 10 μL of sample volume. The distinct feature of MEPS is the magnitude of the elution volume that could be directly injected to GC system. Various parameters such as extraction cycles, washing solvent, elution solvent, elution volume and pH, which influenced the MEPS performance, were tested and optimised. The calibration curves were obtained in the concentration range 1–500 ng/mL. The results showed a close correlation coefficient (R2 > 0.991) for all analytes in the calibration range studied. The LOD and LOQ obtained for GC–MS under selected ion monitoring acquisition are between 0.0038–0.01 and 0.0125–0.033 ng/mL, respectively. The developed method is applicable for the quantification of these compounds in tap water and commercial samples. This method has been shown to be selective as no interferences from endogenous substances were detected by analysis. This method not only decreases sample preparation time but is cheaper, eco‐friendly and easier to perform compared to traditional techniques.  相似文献   

13.
The formation of 3-(2-nitrophenyl)pyruvic acid and its amide and ester derivatives – key compounds for the Reissert indole synthesis – was achieved under various reaction conditions via the acid catalyzed hydrolysis of 5-(2-nitrobenzyliden)-2,2-dimethyl-1,3-oxazolidin-4-one, which is readily available from 3-(2-nitrophenyl)oxirane-2-carboxamide. A new and highly efficient method for the synthesis of indole-2-carboxylic acid derivatives via the intramolecular reductive cyclization of o-nitrophenylpyruvic acid and its amide and ester derivatives was developed using Na2S2O4 in dioxane/water at reflux.  相似文献   

14.
A method was validated and applied for the analysis of the insect growth regulator methoprene [Isopropyl (2E,4E)-11-methoxy-3,7,11-trimethyldodeca-2,4-dienoate], its metabolite methoprene acid, the insecticide permethrin [3-(2,2-dichloro-ethenyl)-2,2-dimethylcyclopropanecarboxylic acid(3-phenoxyphenyl)methylester], and two of its metabolites, m-phenoxybenzyl alcohol and m-phenoxybenzoic acid, in rat plasma and urine using solid-phase extraction and reversed-phase high performance liquid chromatography. The analytes were separated using gradient of 55-100% acetonitrile in water (pH 4.0) at a flow rate ranging between 0.6 and 1.0 mL/min over a period of 20 min, and UV detection at 210 and 254 nm. The retention times ranged from 7.3 to 18.4 min. The limits of detection ranged between 50 and 100 ng/ml, while limits of quantitation were 100-150 ng/mL. Average percentage recovery of five spiked plasma samples was 83.6 +/- 3.9, 80.1 +/- 5.4, 82.1 +/- 4.4, 83.7 +/- 3.9 and 83.1 +/- 4.7, and from urine 79.3 +/- 4.3, 82.0 +/- 5.4, 80.7 +/- 4.2, 78.9 +/- 5.7 and 83.9 +/- 4.5 for methoprene, methoprene acid, permethrin, m-phenoxybenzyl alcohol and m-phenoxybenzoic acid, respectively. The method was linear and reproducible over the range of 100-1000 ng/mL. This method was applied to analyze the above chemicals and metabolites following their combined administration in rats.  相似文献   

15.
Reaction between a chiral imidazole–amine precursor derived from (1R,2R)-trans-diaminocyclohexane and P1Cl (where P1 = PPh2, P(1,3,5-Me3C6H3)2, P(2,2′-O,O′-(1,1′-biphenyl), P((R)-(2,2′-O,O′-(1,1′-binaphthyl))) and P((S)-(2,2′-O,O′-(1,1′-binaphthyl)))) followed by RX (where R = nPr, iPr, CHPh2, X = Br; R = iPr, X = I), respectively, gives a selection of chiral imidazolium–phosphine compounds. Deprotonation of the imidazolium salt gives the corresponding NHC–P ligands that can be used in metal-mediated asymmetric catalytic applications. Catalytic reactions show that NHC–P ligands give a significantly greater rate of reaction for a palladium catalysed allylic substitution reaction in comparison to analogous di-NHC or NHC–imine ligands and that NHC–P hybrids are also effective for iridium catalysed transfer hydrogenation.  相似文献   

16.
Oxidation of 4-substituted 2,2-bis(trifluoromethyl)thietanes by m-chloroperoxybenzoic acid results in selective formation of the corresponding S-oxides in 65-86% yield. Oxidation of 4-C2H5S-2,2-bis(trifluoromethyl)thietane under mild conditions led to selective formation of 4-C2H5SO2-2,2-bis(trifluoromethyl)thietane, which under more rigorous conditions was selectively converted into trans-4-C2H5SO2-2,2-bis(trifluoromethyl)thietane-1-S-oxide. Reaction of 4-substituted 2,2-bis(trifluoromethyl)thietanes with activated aluminum powder results in a highly selective ring expansion process, producing the corresponding 5-fluoro-4-(trifluoromethyl)-2,3-dihydro-2-alkoxythiophenes in 58-93% yield. These compounds were also prepared in 61-85% yield using a “one-pot” procedure, starting from sulfur, hexafluoropropene and the corresponding vinyl ether without isolation of any intermediates. Both 2-i-C3H7O- and 2-t-C4H9O- 5-fluoro-4-(trifluoromethyl)-2,3-dihydrothiophenes were converted into 2-fluoro-3-trifluormethylthiophene by reaction with P2O5.  相似文献   

17.
A new complex [Mn2(C12H12N2)3(C14H8O4)2 (C2H5OH)2] n (where C14H8O4 is 2,2′-bi-phenyldicarboxy- late, bpda; C12H12N2 is benzidine), has been solvothermally synthesized at 443 K and characterized by the elemental analyses, IR, and the single crystal X-ray diffraction analysis. The title complex crystallizes in the triclinic system, space group P-1, with a=9.472 (4) Å, b=12.638(5) Å, c=13.434(5) Å, and Z=1. The compound consists of one-dimensional S-shaped subchains which interlinked by μ3-2,2′-bpda into a 2-D sheet. The lattice alcohol molecules are located between the layers of the sheet. The magnetic susceptibility has been measured and indicates possible antiferromagnetic coupling between adjacent Mn(II). Based on the TGA curve, the thermal decomposition mechanism of the compound has also been discussed.  相似文献   

18.
《Tetrahedron: Asymmetry》2014,25(4):327-333
First synthesis of C2-symmetric chiral O,N,N,O-tetradentate 2,2-bipyridyldiolpropane ligands is described. The Mukaiyama–Michael reaction was applied as an important reaction for the synthesis of 2,2-bipyridylpropane 9. Among the ligands synthesized, ligand 11 exhibits excellent chiral induction (up to 97% ee) in diethylzinc addition to various aldehydes. The use of additional Lewis acid such as Ti(OiPr)4 in diethylzinc addition reaction is not required for the present catalytic system.  相似文献   

19.
3-Phenylpropenal benzoylhydrazone (HL) reacts with cobalt, nickel, and copper chlorides, nitrates, and acetates to give coordination compounds MX2 · nH2O [M = Co, Ni, Cu; X = Cl, NO3, HL = C6H5CH=CHCH=NNHC(O)C6H5; n = 0, 2] and ML2 · nH2O (M = Co, Ni, Cu; n = 1–3). Complexes MALCI (M = Co, Ni, Cu) were obtained by these reactions in the presence of amines (A = C5H5N, 2-CH3C5H4N, 3-CH3C5H4N, 4-CH3C5H4N). All the compounds have a monomeric structure. Azomethine (HL) in them behaves as a bidentate N,O-ligand. Thermolysis of the complexes involves the stages of dehydration (70–90°C), deaquation (145–155°C) or deamination (145–185°C), and complete thermal decomposition (330–490°C).  相似文献   

20.
A screening method has been developed for the determination of 23 organochlorine pesticides (OCPs) and 3-pyrethroid metabolities [cis- and trans-3-(2,2-dichlorovinyl)-2,2-dimethyl-(1-cyclopropane) carboxylic acid, cis-3-(2,2-dibromovinyl)-2,2-dimethyl-(1-cyclopropane) carboxylic acid and 3-phenoxybenzoic acid] from human urine. OCPs were directly detected in urine samples while pyrethroid metabolites required acid-induced hydrolysis to convert their conjugates into free acids; all compounds were then cleaned-up/preconcentrated using solid phase extraction. Determination and quantitation was achieved by gas chromatography with a mass spectrometer detector operating in selected ion monitoring mode. Limits of detection varied between 0.1 and 0.3 ng/mL with linear ranges from 0.3 to 700 ng/mL; the precision of the method was high (4.3-7.2%). Recoveries of all analytes from urine samples fortified at levels of 30 ng/mL for each OCP and 15 ng/mL for each pyrethroid metabolite ranged from 88 to 101% (captan gave the lowest recovery). The results obtained from the analysis of real urine samples show the suitability of the proposed method for monitoring people exposed to organochlorine and pyrethroid pesticides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号