首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A simple and rapid in situ preconcentration method for the determination of phosphate in environmental waters has been developed for field analysis. This method is based on solid-phase extraction on a zirconium-loaded Sep-Pack Accell CM cartridge (Zr-SP) and is applicable to studies in which sampling is performed by use of a graduated syringe to prevent contamination and to ensure easy operation at sampling sites. The Zr-SP cartridge was prepared by passing 0.1 mol L(-1) zirconium solution through a Sep-Pak Accell CM cartridge, packed with cation exchange sorbent based on a silica matrix. The adsorption of phosphate and its desorption depend only on the pH of the solution. A water sample containing phosphate was adjusted to pH 2 and passed through the Zr-SP cartridge to collect it. The retained phosphate was quantitatively eluted with 0.5 mol L(-1) sodium hydroxide solution. The phosphate retained in the Zr-SP cartridge was stable for at least one month. The established preconcentration method was successfully applied to brackish lake waters to investigate seasonal changes in the distribution and behavior of phosphate in a brackish lake.  相似文献   

2.
A simple and rapid in situ preconcentration method for the determination of dissolved manganese in environmental waters has been developed based on solid-phase extraction using a Sep-Pak C18 cartridge. Manganese in water samples, which was taken into a graduated syringe to easily perform the operation for collecting manganese at sampling sites, was converted into a stable complex with 4-(2-pyridylazo)resorcinol (PAR) at pH 10 immediately after sample collection. The formed Mn-PAR complex was collected by a Sep-Pak C18 cartridge, which was packed with C18-bonded silica. The complex was stable in the Sep-Pak C18 cartridge for at least one month. The retained complex was quantitatively eluted with 0.5 M hydrochloric acid. The manganese was determined by graphite-furnace AAS. The proposed method was successfully applicable to brackish lake water samples to investigate the behavior of dissolved manganese in brackish lakes.  相似文献   

3.
A new method has been developed for the determination of trace rare earth elements (REEs) in water samples based on preconcentration with a microcolumn packed with multiwalled carbon nanotubes (MWNTs) prior to their determination by inductively coupled plasma atomic emission spectrometry (ICP-AES). The optimum experimental parameters for preconcentration of REEs, such as pH of the sample, sample flow rate and volume, elution solution and interfering ions, have been investigated. The studied REEs ions can be quantitatively retained by MWNTs when the pH exceed 3.0, and then eluted completely with 1.0 mol L−1 HNO3. The detection limits of this method for REEs was between 3 and 57 ng L−1, and the relative standard deviations (RSDs) for the determination of REEs at 10 ng mL−1 level were found to be less than 6% when processing 100 mL sample solution. The method was validated using a certified reference material, and has been successfully applied for the determination of trace rare earth elements in lake water and synthetic seawater with satisfactory results.  相似文献   

4.
In this study, a sensitive and multiclass method has been developed for analysis of three families of steroid hormones, i.e. progestins, oestrogens, androgens, by SPE-HPLC-ESI-MS/MS. The extraction efficiency of thermally condensed humic acids onto silica sorbent (HA-C@silica), here for the first time studied for multiclass enrichment of these sex hormones, was tested in different environmental waters (tap and river water, urban wastewater treatment plant effluent) spiked at the nanograms per litre levels (5–1000 ng L−1). Quantitative adsorption was achieved using 200 mg sorbent for preconcentration of 250–1000 mL sample, at the native pH (pH = 6.5–7.7). Elution was performed by two sequential fractions (methanol followed by acetonitrile), obtaining in all the matrices investigated satisfactory recoveries (71% to 124% for river waters and 71–113% for urban wastewater treatment plant effluent) and RSDs below 15% (n = 3). The high enrichment factors (up to 4000) coupled with high-performance liquid chromatography tandem mass spectrometry quantification (MRM mode) provided low limits of detection and quantification (a few ng L−1), that are suitable for environmental monitoring. Most of the analytes were detected in river water and in wastewater effluent samples (in the ng L−1 concentration range), attesting their environmental diffusion. The proposed method was extended to a fourth class, Glucocorticoids, achieving good results in river samples, by the same SPE cartridge and chromatographic run.  相似文献   

5.
A method for the preconcentration of gold in natural waters at the sampling site using tributyl phosphate as a solid extractant [Se(TBP)] was developed as a preliminary step prior to the determination of gold by neutron activation and γ-spectrometry. The SE(TBP) was saturated with gaseous chlorine for extracting all gold species. In batch experiments gold was quantitatively retained on the SE(TBP) in 10 min. After extraction and washing, the SE(TBP) was ashed or back-extracted. Gold was quantitatively eluted with hot, neutral 0.025 M thiourea. The gold content of residues of ashing or eluents after evaporation was determined by neutron activation and γ-spectrometry. The detection limit for the overall procedure was 0.2 ng 1?1. The efficiency was tested on ‘equilibrated’ solutions prepared from river water and tracer solutions of gold. For comparison, the gold content of natural water samples was determined using preconcentration on activated charcoal.  相似文献   

6.
A flow injection mini-column system based on short reaction times with 8-hydroxyquinoline (oxine) with ICP-AES detection is described for the isolation and preconcentration of the “fast reactive” or “toxic” aluminium fraction in water samples. Using a 3 s reaction time with oxine (5 × 10–4 mol/l) at pH 5.0, the “fast reactive” aluminium fraction is shown not to include the non-toxic AlF2+ species at low F: Al3+ molar ratios (0.3 : 1). The complexed aluminium is isolated in a stable and recoverable form on mini-columns of Amberlite XAD-2 (0.3 cm × 5.0 cm, resin particle size range 0.08 mm–0.16 mm)). The retained aluminium is recovered by “back-flushing” the analytical column with 1 mol/l HCl for final element specific detection by ICP-AES. Detection limits (after preconcentration) of 2 μg/l, a linear range of 0–500 μg/l, and possible preconcentration factors of up to 18 times are demonstrated with the present system. Implications for the possible solution of sample stability problems encountered with labile aluminium species analysis and the development of a “field sampling” technique are discussed, where the desired Al fraction is quantitatively retained in a stable form on mini-columns.  相似文献   

7.
Pei Liang  Qian Li  Rui Liu 《Mikrochimica acta》2009,164(1-2):119-124
A new method has been developed for the determination of trace molybdenum based on separation and preconcentration with TiO2 nanoparticles immobilized on silica gel (immobilized TiO2 nanoparticles) prior to its determination by graphite furnace atomic absorption spectrometry (GFAAS). The optimum experimental parameters for preconcentration of molybdenum, such as pH of the sample, sample flow rate and volume, eluent and interfering ions, have been investigated. Molybdenum can be quantitatively retained by immobilized TiO2 nanoparticles at pH 1.0 and separated from the metal cations in the solution, then eluted completely with 0.5 mol L?1 NaOH. The detection limit of this method for Mo was 0.6 ng L?1 with an enrichment factor of 100, and the relative standard deviation (RSD) was 3.4% at the 10 ng mL?1 Mo level. The method has been applied to the determination of trace amounts of Mo in biological and water samples with satisfactory results.  相似文献   

8.
An on-line zinc preconcentration and determination system implemented with inductively coupled plasma optical emission spectrometry (ICP-OES) was developed. The zinc was precipitated and retained on a minicolumn filled with ethyl vinyl acetate (EVA) at pH 9.0, without using any complexing reagent. The zinc ions were eluted from the minicolumn with 10% (v/v) hydrochloric acid. Experimental conditions including pH and sample loading and eluting variables were evaluated and established.An enrichment factor (EF) of 44 was obtained for Zn2+ with a preconcentration time of 120 s. Under the optimal conditions, the value of the limit of detection (3σ) for the preconcentration of 10 mL of sample was 0.08 μg L− 1. The sampling frequency was about 24 h− 1. The precision for six replicate determinations (repeatability conditions) at 50 μg L− 1 Zn level was 3.94% relative deviation standard (RSD), calculated from the peak heights obtained. The methodology was successfully applied to the determination of zinc in tap water samples and in a certified VKI reference material QC Metal LL1 DHI (Water & Environment) Denmark.  相似文献   

9.
This paper describes the development of a new electrochemical sensor for 17β-estradiol (E2) determination based on glassy carbon electrode (GCE) modified with molecularly imprinted polymer grafted onto iniferter-multiwall carbon nanotubes surface (MIP-MWCNT) and dihexadecyl-hydrogen-phosphate (DHP). The electrochemical method was based on closed-circuit preconcentration of E2 in 0.1 mol L−1 phosphate buffer (pH 7.0) during 500 s. Upon preconcentration, E2 was determined by differential pulse voltammetry (DPV) exhibiting a limit of detection of 0.01 μmol L−1. The sensor exhibited higher selectivity toward E2 and it was applied for E2 determination in natural water samples, with accuracy attested by HPLC-DAD.  相似文献   

10.
A simple and fast voltammetric method based on a new electrode composed of carbon paste electrode/bifunctional hybrid ion imprinted polymer (CPE/IIP) was developed for the quantification of Cd2+ in water samples. The voltammetric measurements by Differential Pulse Voltammetry were performed by using CPE containing 11.0 mg of IIP under phosphate buffer solution at concentration 0.1 mol L?1 and pH 6.5. The electrochemical method was carried out by Cd2+ preconcentration at ?1.2 V during 210 s, followed by anodic stripping. The performance of IIP towards Cd2+ determination was evaluated by comparison to non-imprinted polymer, whose detectability of IIP was much higher (45%). The sensitivity of the sensor was found to be 0.0105 µA/µg L?1. The limits of detection and limits of quantification were found to be 4.95 μg L?1 and 16.4 μg L?1, respectively. The developed method was successfully applied to Cd2+ determination in mineral, tap and lake water samples, whose results are in agreement with thermospray flame furnace atomic absorption spectrometry (TS-FF-AAS) used as reference analytical technique. According to achieved results, the developed method can be used for routine analysis of quality control of water samples from different sources.  相似文献   

11.
An on-line scandium preconcentration and determination method was developed with spectrophotometer associated with flow injection. Scandium from aqueous sample solution of pH 4.5 was selectively retained in the minicolumn containing XAD-4 resin impregnated with nalidixic acid at a flow rate of 11.8 mL min?1 as scandium–nalidixic acid complex. The scandium complex was desorbed from the resin by 0.1 mol L?1 HCl at a flow rate of 3.2 mL min?1 and mixed with arsenazo-III solution (0.05 % solution in 0.1 mol L?1 HCl, 3.2 mL min?1) and taken to the flow through cell of spectrophotometer where its absorbance was measured at 640 nm. The preconcentration factors obtained were 35 and 155; detection limits of 1.4 and 0.32 μg L?1 and sample throughputs of 40 and 11 were obtained for preconcentration time of 60 and 300 s, respectively. The tolerance limits of many interfering cations like Th(IV), U (VI), rare-earths and anions like tartrate, citrate, oxalate and fluoride were improved. The method was successfully applied to the determination of scandium from mock seawater samples and good recovery was obtained. The method was also validated on certified reference material IAEA-SL-1 (lake sediment) and the result was in good agreement with the reported value.  相似文献   

12.
A modified SBA-15 mesoporous silica was developed, as an adsorbent, for the removal of Cr(VI) ions from natural-water samples. The effects of experimental parameters, including pH of solution, sample and eluent flow rate, the eluent composition, the eluent volume, and the effect of coexisting ions on the separation and determination of Cr(VI), were investigated. It was shown that Cr(VI) was selectively adsorbed from aqueous solution at pH 3, but Cr(III) could be adsorbed from solution at alkaline pH range. The retained Cr(VI) was eluted with 0.5?mol?L?1 KCl solution in 0.1?mol?L?1 Na2CO3 subsequently. Under the optimum conditions, the modified mesoporous silica (py-SBA-15) with a high pore diameter exhibited an adsorption capacity of 136?mg?g?1 and a lower limit of detection than 2.3?µg?L?1 by using diphenylcarbazide as a chromophorous reagent for the determination of Cr(VI) ions. A preconcentration factor as high as 200 was calculated for Cr(VI). The loaded py-SBA-15 can be reactivated with recovery of more than 98.5% over at least eight cycles. The relative standard deviation (RSD) for Cr(VI) ion recovery was less than 1.8%. Validation of the outlined method was performed by analysing a certified reference material (BCR 544). The proposed method was applied to determine Cr(VI) value in natural and waste water samples successfully.  相似文献   

13.
In this work, a bulk liquid membrane method has been applied for Ni enrichment and separation from natural waters. The carrier-mediated transport was accomplished by pyridine-2-acetaldehyde benzoylhydrazone dissolved in toluene as a complexing agent. The preconcentration was achieved through pH control of source and receiving solutions via a counterflow of protons. The main variables were optimized by using a modified simplex technique. High transport efficiencies (101.2 ± 1.8–99.7 ± 4.2%) were provided by the carrier for nickel ions in a receiving phase of 0.31 mol L−1 nitric acid after 9–13 h depending on sample salinity. The precision of the method was 2.05% (without a saline matrix) and 4.04% (with 40 g L−1 NaCl) at the 95% confidence level and the detection limit of the blank was 0.015 μg L−1 Ni for detection by atomic absorption spectroscopy. The applicability of the method was tested on certified reference and real water samples with successful results, even for saline samples. The relative errors were −0.60% for certified reference materials and ranged from −0.39 to 2.90% and from 0.3 to 11.05% for real samples, obtained by comparison of inductively coupled plasma mass spectrometry and adsorptive cathodic stripping voltammetry measurements, respectively.  相似文献   

14.
A novel on-line sequential injection (SI) dispersive liquid-liquid microextraction (DLLME) system coupled to electrothermal atomic absorption spectrometry (ETAAS) was developed for metal preconcentration in micro-scale, eliminating the laborious and time consuming procedure of phase separation with centrifugation. The potentials of the system were demonstrated for trace lead and cadmium determination in water samples. An appropriate disperser solution which contains the extraction solvent (xylene) and the chelating agent (ammonium pyrrolidine dithiocarbamate) in methanol is mixed on-line with the sample solution (aqueous phase), resulting thus, a cloudy solution, which is consisted of fine droplets of xylene, dispersed throughout the aqueous phase. Three procedures are taking place simultaneously: cloudy solution creation, analyte complex formation and extraction from aqueous phase into the fine droplets of xylene. Subsequently the droplets were retained on the hydrophobic surface of PTFE-turnings into the column. A part of 30 μL of the eluent (methyl isobutyl ketone) was injected into furnace graphite for analyte atomization and quantification. The sampling frequency was 10 h−1, and the obtained enrichment factor was 80 for lead and 34 for cadmium. The detection limit was 10 ng L−1 and 2 ng L−1, while the precision expressed as relative standard deviation (RSD) was 3.8% (at 0.5 μg L−1) and 4.1% (at 0.03 μg L−1) for lead and cadmium respectively. The proposed method was evaluated by analyzing certified reference materials and was applied to the analysis of natural waters.  相似文献   

15.
In this paper, amino-modified nanoporous silica (APS-SBA-15) was synthesized as a new solid-phase sorbent for the extraction of glycolic acid, monochloroacetic acid, and dichloroacetic acid in synthetical betaine products. Octadecyl silica cartridge was used to reduce the concentration of matrix betaine. PS-Ag+ pre-treatment cartridge was applied to remove high Cl? concentration. The obtained effluent sample was passed through of the APS-SBA-15 sorbent. The effect of pH, flow rate of sample and eluent, and type and volume of the eluent were investigated and optimized. Chloroacetate and glycolate were eluted with 0.8 mol L?1 solution of HClO4 and measured by HPLC with a UV–vis detector. At optimum effective parameters, preconcentration factor of 129 was achieved in this method. The detection limits of mono- and dichloroacetic acid and glycolic acid were 13, 3.7, and 8.6 ng L?1, respectively.  相似文献   

16.
The potential of multiwalled carbon nanotubes (MWNTs) as solid-phase extraction adsorbent for the separation and preconcentration of gold has been investigated. Gold could be adsorbed quantitatively on MWNTs in the pH range of 1–6, and then eluted completely with 2 mL of 3% thiourea in 1 mol L− 1 HCl solution at a flow rate of 0.5 mL min− 1. A new method using a microcolumn packed with MWNTs as sorbent has been developed for the preconcentration of trace amount of Au prior to its determination by flame atomic absorption spectrometry. Parameters influencing the preconcentration of Au, such as pH of the sample, sample flow rate and volume, elution solution and interfering ions, have been examined and optimized. Under the optimum experimental conditions, the detection limit of this method for Au was 0.15 µg L− 1 with an enrichment factor of 75, and the relative standard deviation (R.S.D) was 3.1% at the 100 µg L− 1 Au level. The method has been applied for the determination of trace amount of Au in geological and water samples with satisfactory results.  相似文献   

17.
M.V. Balarama Krishna 《Talanta》2009,79(5):1454-1463
The applicability of polyaniline (PANI) for the on-line preconcentration and recovery of palladium from various water samples has been investigated. Batch experiments were performed to optimize conditions such as pH and contact time to achieve quantitative separation of Pd spiked at high (μg ml−1) and low levels (ng ml−1). During all the steps of the removal process, it was found that Pd was selectively removed by PANI even in the presence of various ions. Quantitative removal of Pd occured in the entire studied pH range (1-12) and the Kd value was found to be >106. Kinetic studies show that a contact time of <4 min was adequate to reach equilibrium. The retained Pd was subsequently eluted with a mixture of HCl and thiourea, optimized using a factorial experimental design approach. ICP-OES was used for the micro-level determinations of Pd whereas ICP-MS was used for the determination of Pd at sub-ppb levels.Breakthrough curve using column experiments demonstrated that PANI has an excellent ability to accumulate up to ∼120 mg g−1 of Pd from synthetic sample solutions. A preconcentration factor of about 125 was achieved for Pd when 250 ml of water was passed. PANI columns prepared were used up to 10 times in consecutive retention-elution cycles without appreciable deterioration in their performance. The proposed on-line method also has the ability to remove interfering elements Cu and Y for the determination of Pd in waters by ICP-MS. The reported method has been applied successfully for the determination of Pd in ground water, lake water sea-water and waste water samples. The recoveries were found to be >95% in all cases. These studies indicate that PANI has an excellent ability to preconcentrate Pd from various waters making the method very promising for the determination of Pd.  相似文献   

18.
A method for the screening of biogenic amines in waters, whose presence at some concentration levels potentially cause adverse effects on humans, was developed for the first time. A suitable and easy to operate system, with low reagent consumption was devised. The proposed flow-based system was divided into two analytical parts, preconcentration and derivatization of the biogenic amines. Solid phase extraction, using a Chelex 100 resin, was the newly chosen strategy for preconcentration of the analyte and also removal of possible matrix interferences. Fluorescamine was used as derivatization reagent for biogenic amines followed by fluorimetric detection. The influence of different sorbent materials for preconcentration and flow system parameters such as pH of standards and buffer, composition of the eluent solution, flow-rates, standard/sample volume, were studied. The interference of ammonia was assessed, and no interference was observed. The limits of detection and quantification were 1.7 and 5.6 µmol L?1, respectively. The developed system was applied to water samples and the recovery results were 98 ± 7%.  相似文献   

19.
In the present study, the ?5-(4-dimethylaminobenzylidene)rhodanin-modified SBA-15? was applied as stable solid sorbent for the separation and preconcentration of trace amounts of cobalt ions in aqueous solution. SBA-15 was modified by ?5-(4-dimethylaminobenzylidene)rhodanin reagent. The sorption of Co2+ ions was done onto modified sorbent in the pH range of 6.8–7.9 and desorption occurred in 5.0 mL of 3.0 mol L?1 HNO3. The results exhibit a linear dynamic range from 0.01 to 6.0 mg L?1 for cobalt. Intra-day (repeatability) and inter-day (reproducibility) for 10 replicated determination of 0.06 mg L?1 of cobalt was ±1.82% and ?±1.97%?. Detection limit was 4.2 µg L?1 (3Sb, n = 5) and preconcentration factor was 80. The effects of the experimental parameters, including the sample pH, flow rates of sample and eluent solution, eluent type and interference ions were studied for the preconcentration of Co2+. The proposed method was applied for the determination of cobalt in standard samples, water samples and agricultural products.  相似文献   

20.
A new and simple analytical methodology for the simultaneous analysis of acidic and zwitterionic (fluoro)quinolones in surface waters at trace concentration level is presented. The method is based on the preconcentration of these analytes by a solid-phase extraction procedure and their subsequent quantification by liquid chromatography using ultraviolet detection. The breakthrough volumes of the selected (fluoro)quinolones in four different sorbents--C18, styrenedivinylbenzene (SDB), C18-cation-exchange and SDB-cation-exchange--have been evaluated and varied between 25 and 150 ml depending on the antibiotic and the sorbent used. An exhaustive study of the influence of sample pH on the preconcentration step has been carried out in order to find a suitable procedure for extraction of acidic and zwitterionic FQs in one single step. Under optimum conditions, it was possible to percolate up to 250 ml of water solution onto both C18 and SDB-cation-exchange cartridges with quantitative recoveries for all the analytes tested. However, matrix components of the surface water samples analysed negatively affected the recoveries of the analytes in the SDB-cation-exchange cartridge and thus, C18 cartridges were finally selected for the analysis of the (fluoro)quinolones in lake and river water. The limits of detection achieved with this procedure varied between 8 and 20 ng l(-1) proving its suitability for the determination of the (fluoro)quinolones in water samples at a realistic environmental concentration level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号