首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Mass spectra of 38 organophosphorus compounds, containing both phosphate ester (P(O)OR) and phosphoramidate (P(O)NR′R″) functional groups, were recorded and discussed. Attention was focused on P? N bond cleavage, which can involve simple fission, fission accompanied by hydrogen migration from the ester group and fission accompanied by the migration of the ester R group to the departing nitrogen atom. Fragmentations characteristic for the N(β-chloroethyl) derivatives (phosphorylated nitrogen mustards) are also presented.  相似文献   

2.
In order to investigate the microscopic behavior of the crystal surface growth of the fluorinated cerium dioxide polishing powder, the adsorption and migration of the Ce, O, and F atoms on the CeO2 (111) surface were studied by using density functional theory with Hubbard correction +U. The adsorption energies of three single atoms at five high-symmetry sites and the migration activation energies along the migration pathway on the CeO2 (111) surface were calculated. Results show that the most stable adsorption sites of the Ce, O, and F atoms were the Oh, Cebri, and Cet sites, respectively. The Ce atom migrated from the Oh to the Ot site. The O atom migrated from the Cebri to the Obri site. The F atom migrated from the Cet to the Oh site. The migration activation energies of the Ce, O, and F atoms along the migration pathways were 1.526, 0.597, and 0.263 eV, respectively. The F adatom does not change the spatial configuration of the Ce and the O atoms. When the O vacancy occurs on the CeO2 (111) surface, the F adatom can make up for the O vacancy defect.  相似文献   

3.
We studied diffusion of water molecules in the direction perpendicular to the surface of an ice film. Amorphous ice films of H(2)O were deposited on Ru(0001) at temperature of 100-140 K for thickness of 1-5 bilayer (BL) in vacuum, and a fractional coverage of D(2)O was added onto the surface. Vertical migration of surface D(2)O molecules to the underlying H(2)O multilayer and the reverse migration of H(2)O resulted in change of their surface concentrations. Temporal variation of the H(2)O and D(2)O surface concentrations was monitored by the technique of Cs(+) reactive ion scattering to reveal kinetics of the vertical diffusion in depth resolution of 1 BL. The first-order rate coefficient for the migration of surface water molecules ranged from k(1)=5.7(+/-0.6) x 10(-4) s(-1) at T=100 K to k(1)=6.7(+/-2.0) x 10(-2) s(-1) at 140 K, with an activation energy of 13.7+/-1.7 kJ mol(-1). The equivalent surface diffusion coefficients were D(s)=7 x 10(-19) cm(2) s(-1) at 100 K and D(s)=8 x 10(-17) cm(2) s(-1) at 140 K. The measured activation energy was close to interstitial migration energy (15 kJ mol(-1)) and was much lower than diffusion activation energy in bulk ice (52-70 kJ mol(-1)). The result suggested that water molecules diffused via the interstitial mechanism near the surface where defect concentrations were very high.  相似文献   

4.
When an alkylphenylphosphinic acid PRhP(O)N3 (R = Me, Et, Pri, or But) is photolysed in MeOH either the alkyl or phenyl group can migrate from P to N in the Curtius-like rearrangement. The composition of the product shows that migration of the alkyl group R is preferred. However, the preference is not great and decreases as R changes But→Pri→Et→Me (approx. migratory aptitudes relative to Ph: 2.1, 1.7, 1.3 and 1.2 respectively), probably because the PhP bond is better able to assume the correct conformation for Ph migration when R is less bulky. For t-butylmethylphosphic azide there is very little preference for migration of But relative to Me. Small amounts of unrearranged products such as ButPhP(O)NHOMe and ButPhP(O)NH2 are generally produced in the photolyses, together with the methyl phosphinates RPhP(O)OMe (major product when R = Me) resulting from (non-photochemical) solvolysis of the azide.  相似文献   

5.
O-(p-Substituted benzoyl)-N-(p-toluenesulfonyl)-N-arylhydroxylamines (1) were found to rearrange thermally giving o-acyloxy-p-toluenesulfonanilides (2) in quantitative yields. An intramolecular concerted cyclic process is considered to be in operation for the rearrangement on the basis of 18O tracer and kinetic experiments. The effects of both substituents and solvents on the rate of this novel 1,3-acyloxy migration were also examined. While the effect of solvent was small, the electronic effect of substituents on both N and O atoms plays a significant role in determining the mechanism of the rearrangement, especially the mode of cleavage of the NO bond at the transition state of the 1,3-acyloxy migration.  相似文献   

6.
Photoionization-induced water migration in the trans-formanilide-water 1:1 cluster, FA-(H(2)O)(1), has been investigated by using IR-dip spectroscopy, quantum chemical calculations, and ab initio molecular dynamics simulations. In the S(0) state, FA-(H(2)O)(1) has two structural isomers, FA(NH)-(H(2)O)(1) and FA(CO)-(H(2)O)(1), where a water molecule is hydrogen-bonded (H-bonded) to the NH group and the CO group, respectively. In addition, the S(1)-S(0) origin transition of FA(CO)-(H(2)O)(2), where a water dimer is H-bonded to the CO group, was observed only in the [FA-(H(2)O)(1)](+) mass channel, indicating that one of the water molecules evaporates completely in the D(0) state. These results are consistent with a previous report [Robertson, E. G. Chem. Phys. Lett., 2000, 325, 299]. In the D(0) state, however, [FA-(H(2)O)(1)](+) produced by photoionization via the S(1)-S(0) origin transitions of FA(NH)-(H(2)O)(1) and FA(CO)-(H(2)O)(1) shows essentially the same IR spectra. Compared with the theoretical calculations, [FA-(H(2)O)(1)](+) can be assigned to [FA(NH)-(H(2)O)(1)](+). This means that the water molecule in [FA-(H(2)O)(1)](+) migrates from the CO group to the NH group when [FA-(H(2)O)(1)](+) is produced by photoionization of FA(CO)-(H(2)O)(1). [FA-(H(2)O)(1)](+) produced by photoionization of FA(CO)-(H(2)O)(2) also shows the IR spectrum corresponding to [FA(NH)-(H(2)O)(1)](+). In this case, the water migration from the CO group to the NH group occurs with the evaporation of a water molecule. Ab initio molecular dynamics simulations revealed the water migration pathway in [FA-(H(2)O)(1)](+). The calculations of classical electrostatic interactions show that charge-dipole interaction between FA(+) and H(2)O induces an initial structural change in [FA-(H(2)O)(1)](+). An exchange repulsion between the lone pairs of the CO group and H(2)O in [FA-(H(2)O)(1)](+) also affects the initial direction of the water migration. These two factors play important roles in determining the initial water migration pathway.  相似文献   

7.
European Legislation establishes that the sum of the migration levels of bisphenol A diglycidyl ether (BADGE), its hydrolysis (BADGE.H2O and BADGE.2H2O) and chlorohydroxy (BADGE.HCl, BADGE.2HCl and BADGE.H2O.HCl) derivatives shall not exceed the limit of 1 mg/kg in foodstuffs or food simulants. A reversed-phase high-performance liquid chromatographic (RP-HPLC) method combined with mass spectrometry detection using atmospheric pressure chemical ionisation (APCI) is developed for the separation, quantification and identification of the interesting compounds. Quantification of the analytes was carried out in the single ion recording mode, once their characteristic masses were selected from their full spectra, by using an external calibration. The optimised method was suitable for the migration evaluation of these compounds in different samples.  相似文献   

8.
Recombination events of a proton with NO3- at (H2O)8 clusters are studied by molecular dynamics, using "on-the-fly" reliable ab initio MP2 potentials. The main findings are: (1) the lifetime of the ions is less than 1.2 picoseconds; (2) the recombination step invariably involves H3O+, not H5O2+; and (3) an essentially unique transition-state structure of H3O+/NO3- for recombination is found in all cases. Proton migration involves both H3O+ and H5O2+ species: Grotthuss and other mechanisms contribute.  相似文献   

9.
The detailed reaction mechanism for the reduction of CO2 to CO catalyzed by (NHC)Cu(boryl) complexes (NHC = N-heterocyclic carbene) was studied with the aid of DFT by calculating the relevant intermediates and transition state structures. Our DFT calculations show that the reaction occurs through CO2 insertion into the Cu-B bond to give a Cu-OC(=O)-boryl species (i.e., containing Cu-O and C-B bonds), and subsequent boryl migration from C to O, followed by alpha-bond metathesis between pinB-Bpin (B2pin2, pin = pinacolate = OCMe2CMe2O) and (NHC)Cu(OBpin). The overall reaction is exergonic by 38.0 kcal/mol. It is the nucleophilicity of the Cu-B bond, a function of the very strong alpha-donor properties of the boryl ligand, rather than the oxophilicity of boron, which determines the direction of the CO2 insertion process. The boryl migration from C to O, which releases the product CO, is the rate-determining step and involves the "vacant" orbital orbital on boron. The (NHC)Cu(boryl) complexes show unique activity in the catalytic process. For the analogous (NHC)Cu(alkyl) complexes, the CO2 insertion into the Cu-C bond giving a copper acetate intermediate occurs with a readily achievable barrier. However, the elimination of CO from the acetate intermediate through a methyl migration from C to O is energetically inaccessible.  相似文献   

10.
Migration of Li+ ions via the vacancy mechanism in LiX (X = F, Cl, Br, and I) with the rocksalt and hypothetical zinc blende structures and Li2X (X = O, S, Se, and Te) with the antifluorite structure has been investigated using first-principles projector augmented wave calculations with the generalized gradient approximation. The migration paths and energies, determined by the nudged-elastic-band method, are discussed on the basis of two idealized models: the rigid-sphere and charged-sphere models. The trajectories and energy profiles of the migration in these lithium compounds vary between these two models, depending on the anion species and crystal structure. The migration energies in LiX with both the rocksalt and hypothetical zinc blende structures show a tendency to decrease with increasing periodic number of the anion species in the periodic table. This is consistent with the widely accepted view that anion species with large ionic radii and high polarizabilities are favorable for good ionic conduction. In contrast, Li2O exhibits the lowest migration energy among Li2X compounds, although O is the smallest among the chalcogens, indicating that electrostatic attractive interactions play the dominant role in the inter-ion interactions in Li2O and, therefore, in the ion migration.  相似文献   

11.
Oxidative stress has been implicated in mediation of vascular disorders. In the presence of vanadate, H(2)O(2) induced tyrosine phosphorylation of PLD1, protein kinase C-alpha (PKC-alpha), and other unidentified proteins in rat vascular smooth muscle cells (VSMCs). Interestingly, PLD1 was found to be constitutively associated with PKC-alpha in VSMCs. Stimulation of the cells by H(2)O(2) and vanadate showed a concentration-dependent tyrosine phosphorylation of the proteins in PLD1 immunoprecipitates and activation of PLD. Pretreatment of the cells with the protein tyrosine kinase inhibitor, genistein resulted in a dose-dependent inhibition of H(2)O(2)-induced PLD activation. PKC inhibitor and down-regulation of PKC abolished H(2)O(2)-stimulated PLD activation. The cells stimulated by oxidative stress (H(2)O(2)) caused increased cell migration. This effect was prevented by the pretreatment of cells with tyrosine kinase inhibitors, PKC inhibitors, and 1-butanol, but not 3-butanol. Taken together, these results suggest that PLD might be involved in oxidative stress-induced migration of VSMCs, possibly via tyrosine phosphorylation and PKC activation.  相似文献   

12.
The neopentyl and the pinacol rearrangements as examples of Wagner-Meerwein rearrangements were investigated by the use of DFT calculations. As the first reaction, a model of neopentyl chloride (1b) and (H2O)12 was employed. In the reaction, the patterns of C--Cl scission, methyl migration, and C--OH formation were analyzed. The calculations have shown that the 2-methyl-2-butanol (6) is formed in two steps with the transient intermediate, neopentyl alcohol (3). The first step is the nucleophilic substitution reaction and is the rate-determining one. The second step is the dual migration of methyl and OH2 groups. The primary and tertiary carbocations were calculated to be absent in the neopentyl rearrangement starting from the hydrolysis. As the second reaction, the pinacol rearrangement of two substrates 2,3-dimethyl-2,3-butanediol (7) and 2,3-diphenyl-2,3-butanediol (12) was investigated. Acidic aqueous solvent was modeled by H3O+ and 12H2O. The reaction paths were promoted by a hydrogen-bond circuit of H3O+(H2O)2 and were determined as completely concerted processes. Protonated species and carbocations as intermediates also do not intervene during the pinacol rearrangement. Active functions of proton relays along the hydrogen bonds in the two rearrangements were demonstrated.  相似文献   

13.
Activation of CO by the rhenium(V) oxo complex [(DAAm)Re(O)(CH(3))] (1) [DAAm = N,N-bis(2-arylaminoethyl)methylamine; aryl = C(6)F(5), Mes] resulted in the isolation of the rhenium(III) acetate complex [(DAAm)Re(O(2)CCH(3))(CO)] (3). The mechanistic details of this reaction were explored experimentally. The novel oxorhenium(V) acyl intermediate [(DAAm)Re(O)(C(O)CH(3))] (2) was isolated, and its reactivity with CO was investigated. An unprecedented mechanism is proposed: CO is activated by the metal oxo complex 1 and inserted into the rhenium-methyl bond to yield acyl complex 2, after which subsequent migration of the acyl ligand to the metal oxo ligand yields acetate complex 3. X-ray crystal structures of 2 and 3 are reported.  相似文献   

14.
Unusual 1,2‐migration reactions of N‐heterocyclic carbene (NHC) on transition metals were investigated using density functional theory calculations. Our results reveal that the electronic properties, ring strain of the four‐membered ring, and aromaticity of NHC play crucial roles in the thermodynamics of such a 1,2‐migration. Further studies show that changing the methylene on the metal center in the reactant with a more electronegative group (NH or O) will lead to the formation of products with nitrogen coordinating to the metal center, whereas other groups (BH, CF2, and SiH2) will make such a 1,2‐migration reverse. In addition, the reversed rearrangement of 1,2‐boron, silyl migration could be thermodynamically and kinetically favorable.  相似文献   

15.
Reaction paths for the title rearrangement along with its methyl analogue were investigated by density functional theory calculations. The reaction model is R-CO-CO-R + OH(-)(H2O)4 --> R2C(OH)-COO- + (H2O)4 (R = Me and Ph), where the water tetramer is employed both for solvation to OH- and for the proton relay along hydrogen bonds. The reaction is composed of OH- addition, C-C rotation, carbanion [1,2] migration, and proton relay toward the product anions. The rate-determining step was calculated to be the carbanion migration. Apparently, carbanion [1,2] migration is unlikely relative to the carbonium ion one. However, LUMOs of the 1,2-diketones have large and nodeless lobes at the reaction center, the C1-C2 bond. The specific LUMO character is reflected both in the [2+1]-like one-center nucleophilic addition and in the carbanion [1,2] shift. The proton relay involved in the isomerization from the oxo intermediate to the carboxylate was calculated to take place via the water tetramer.  相似文献   

16.
A novel capillary electrophoretic (CE) method, based on in-capillary complexation with [PW(11)O(39)](7-), was developed for the determination of cadmium(II) in natural water samples. When a sample solution is injected into a capillary containing 0.20 mM [PW(11)O(39)](7-) and 0.10 M malonate buffer (pH 3.0), the ternary Keggin-type complex, [P(Cd(II)W(11))O(39)](5-), which possesses high molar absorbtivities in the UV region, is formed in the capillary, and its migration toward the anode gives a well-defined migration peak in the electropherogram. An advantage of this method is that many divalent metal ions do not interfere. The proposed method was successfully applied to the determination of Cd(II) in environmental samples. The detection limits were 1 x 10(-7) and 5 x 10(-7) M for river-water and seawater samples, respectively (signal-to-noise ratio = 3).  相似文献   

17.
A kind of bio‐based plasticizer, poly (hexanediol maleic) (MH), was synthesized using 1,6‐hexalene and maleic acid as raw materials, and it was modified by hydrosilicon‐hydrogenation reaction to improve its plasticizing efficiency. The chemical structure and plasticizing performance of MH and its modification product (MHA) were characterized by Fourier‐transform infrared spectroscopy (FTIR), proton nuclear magnetic resonance (1H‐NMR), X‐ray photoelectron spectroscopy (XPS), and Dynamic mechanical analysis (DMA). It was found that the hydrosilicon‐hydrogenation modification effectively improved the plasticizing efficiency of MH, reflecting on the decreased Tg and the increased elongation at break of PVC blends. The migration resistance of PVC blends was tested and analyzed by solubility parameters, which revealed that the migration stabilities of PVC blends were promoted after modification. It was verified that the hydrogen bonding interaction between the C?O group of plasticizers and α‐hydrogen of PVC exhibited in FTIR analysis was the main reason for the improvement of plasticizer performance of MH. Moreover, a new hydrogen bonding formed between Si? O? Si of MHA and the α‐hydrogen of PVC derived from XPS also caused the further improvement of plasticity for MHA.  相似文献   

18.
We present and discuss the results of ab initio DFT plane-wave supercell calculations of the atomic and molecular oxygen adsorption and diffusion on the LaMnO(3) (001) surface which serves as a model material for a cathode of solid oxide fuel cells. The dissociative adsorption of O(2) molecules from the gas phase is energetically favorable on surface Mn ions even on a defect-free surface. The surface migration energy for adsorbed O ions is found to be quite high, 2.0 eV. We predict that the adsorbed O atoms could penetrate the electrode first plane when much more mobile surface oxygen vacancies (migration energy of 0.69 eV) approach the O ions strongly bound to the surface Mn ions. The formation of the O vacancy near the O atom adsorbed atop surface Mn ion leads to an increase of the O-Mn binding energy by 0.74 eV whereas the drop of this adsorbed O atom into a vacancy possesses no energy barrier. Ab initio thermodynamics predicts that at typical SOFC operation temperatures (approximately 1200 K) the MnO(2) (001) surface with adsorbed O atoms is the most stable in a very wide range of oxygen gas pressures (above 10(-2) atm).  相似文献   

19.
The structural, energetic, and electronic properties of stoichiometric and defective Li(2)O were studied theoretically. The reliability of the Perdew-Wang method in the framework of density functional theory (DFT), and of two DFT/Hartree-Fock hybrid methods (PW1PW and B3LYP), was examined by comparison of calculated and available experimental data. Atom-centered orbitals and plane waves were used as basis functions for the crystalline orbitals. For both cases, the basis set dependence of calculated properties was investigated. With most of the methods, good agreement with the experimental Li(2)O lattice parameter and cohesive energy was obtained. In accordance with experiment, the analysis of electronic properties shows that Li(2)O is a wide gap insulator. Among the considered methods, the hybrid methods PW1PW and B3LYP give the best agreement with experiment for the band gap. The formation of an isolated cation vacancy defect and an F center in Li(2)O were studied. The effect of local relaxation on the calculated defect formation energies and the defect-induced changes of electronic properties were investigated and compared to available experimental results. The migration of a Li(+) ion in Li(2)O bulk was investigated. The activation energy for the migration of a Li(+) ion from its regular tetrahedral site to an adjacent cation vacancy was calculated, including the effect of local relaxation. The calculated activation barriers, 0.27-0.33 eV, are in excellent agreement with experiment.  相似文献   

20.
We report a capillary isoelectric focusing system based on a sequential injection method for simplified chemical mobilization. This system was coupled to an ion trap mass spectrometer with an electrokinetically pumped nanoelectrospray interface. The nanoelectrospray emitter employed an acidic sheath electrolyte. To simplify focusing and mobilization, a plug of ammonium hydroxide was first injected into the capillary, followed by a section of mixed sample and ampholyte. During focusing, the NH3H2O section worked as catholyte. As focusing progressed, the NH3H2O section was titrated to lower pH by the acidic sheath electrolyte. Chemical mobilization started automatically once the ammonium hydroxide was consumed by the acidic sheath flow electrolyte, which then acted as the mobilization solution. In this report, the lengths of the NH3H2O section and sample were optimized. With a 1 m long capillary, a relative short plug of the NH3H2O section (3 cm) produced both fast migration and reasonable separation resolution. The simplified capillary isoelectric focusing mass spectrometry system produced base peak intensity relative standard deviation of 8.5% and migration time relative standard deviation ≤0.6% for myoglobin and cytochrome C in triplicate runs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号