首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The rhesus macaque exhibits individual differences in susceptibility and resistance to infectious agents such as simian immunodeficiency virus (SIV) under experimental conditions, and these may be genetically determined at least in part by major histocompatibility complex (MHC) class I polymorphism. Although the importance of defining MHC class I polymorphism is well recognized, development of a generic and comprehensive molecular typing method of MHC class I alleles of the rhesus macaque has been hampered because, during the evolution of this species, multiple copies of similar DNA sequences have been generated by duplication events including the coding sequences of Mamu-A and Mamu-B loci. We report here a newly developed reference strand-mediated conformation analysis (RSCA)-based typing method of multiple Mamu-A and Mamu-B cDNAs that allowed us to estimate the number of expressed alleles. This technique detected 1-7 Mamu-A signals and 2-12 Mamu-B signals in a single sample, indicating that the number of functional alleles may vary. By comparing the data from the parents with those from the descendants in the breeding colony, several MHC class I haplotypes consisting of variable numbers of functional Mamu-A and Mamu-B alleles could be assigned.  相似文献   

2.
Chen Y  Seo TS 《Electrophoresis》2011,32(12):1456-1464
We demonstrated a proof‐of‐concept for novel minisatellite tandem repeat typing, called PCR‐free digital VNTR (variable number tandem repeat) typing, which is composed of three steps: a ligation reaction instead of PCR thermal cycling, magnetic bead‐based solid‐phase capture for purification, and an elongated sample stacking microcapillary electrophoresis (μCE) for sensitive digital coding of repeat number. We designed a 16‐bp fluorescently labeled ligation probe which is complementary to a repeat unit of a biotinylated synthetic template mimicking the human D1S80 VNTR locus and is randomly hybridized with the minisatellite tandem repeats. A quick isothermal ligation reaction was followed to link the adjacent ligation probes on the DNA templates, and then the ligated products were purified by streptavidin‐coated magnetic beads. After a denaturing step, a large amount of ligated products whose size difference was equivalent to the repeat unit were released and recovered. Through the elongated sample stacking μCE separation on a microdevice, the fluorescence signal of the ligated products was generated in the electropherogram and the peak number was directly counted which was exactly matched with the repeat number of VNTR locus. We could successfully identify the minisatellite tandem repeat number with only 5 fmol of DNA template in 30 min.  相似文献   

3.
Short tandem repeat (STR) loci, widely used as genetic markers in disease diagnostic studies and human identity applications, are traditionally genotyped through comparison of allele sizes to a sequenced allelic ladder. Allelic ladders permit a floating bin allele calling method to be utilized, which enables reliable allele calling across laboratories, instrument platforms, and electrophoretic conditions. Precise sizing methods for STR allele calling involving fixed bins can also be used when a high degree of precision has been demonstrated within an instrument platform and a set of electrophoretic conditions. An alternative method for reliable genotyping of STR markers, locus-specific brackets (LSBs), is introduced here. LSBs are artificial alleles created through molecular biology manipulations to be shorter or longer than alleles commonly seen in populations under investigation. The size and repeat number of measured alleles are interpolated between the two LSB products that are mixed with the polymerase chain reaction-amplified STR alleles. The advantages and limitations of the LSB approach are described along with a concordance study between the LSB typing approach and other STR typing methods. Complete agreement was observed with 162 samples studied at 5 Y-chromosome loci.  相似文献   

4.
《Electrophoresis》2018,39(12):1466-1473
Massively parallel sequencing (MPS) technologies, also termed as next‐generation sequencing (NGS), are becoming increasingly popular in study of short tandem repeats (STR). However, current library preparation methods are usually based on ligation or two‐round PCR that requires more steps, making it time‐consuming (about 2 days), laborious and expensive. In this study, a 16‐plex STR typing system was designed with fusion primer strategy based on the Ion Torrent S5 XL platform which could effectively resolve the above challenges for forensic DNA database‐type samples (bloodstains, saliva stains, etc.). The efficiency of this system was tested in 253 Han Chinese participants. The libraries were prepared without DNA isolation and adapter ligation, and the whole process only required approximately 5 h. The proportion of thoroughly genotyped samples in which all the 16 loci were successfully genotyped was 86% (220/256). Of the samples, 99.7% showed 100% concordance between NGS‐based STR typing and capillary electrophoresis (CE)‐based STR typing. The inconsistency might have been caused by off‐ladder alleles and mutations in primer binding sites. Overall, this panel enabled the large‐scale genotyping of the DNA samples with controlled quality and quantity because it is a simple, operation‐friendly process flow that saves labor, time and costs.  相似文献   

5.
Antimicrobial resistance (AMR), the ability of a bacterial species to resist the action of an antimicrobial drug, has been on the rise due to the widespread use of antimicrobial agents. Per the World Health Organization, AMR has an estimated annual cost of USD 34 billion in the US and is predicted to be the number one cause of death worldwide by 2050. One way AMR bacteria can spread, and by which individuals can contract AMR infections, is through contaminated water. Monitoring AMR bacteria in the environment currently requires that samples be transported to a central laboratory for slow and labor intensive tests. We have developed an inexpensive assay using paper-based analytical devices (PADs) that can test for the presence of β-lactamase-mediated resistance. To demonstrate viability, the PAD was used to detect β-lactam resistance in wastewater and sewage and identified resistance in individual bacterial species isolated from environmental water sources.  相似文献   

6.
Ambient ionization mass spectrometry (AIMS) is both labor and time saving and has been proven to be useful for the rapid delineation of trace organic and biological compounds with minimal sample pretreatment. Herein, an analytical platform of probe sampling combined with a thermal desorption–electrospray ionization/mass spectrometry (TD-ESI/MS) and multivariate statistical analysis was developed to rapidly differentiate bacterial species based on the differences in their lipid profiles. For comparison, protein fingerprinting was also performed with matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) to distinguish these bacterial species. Ten bacterial species, including five Gram-negative and five Gram-positive bacteria, were cultured, and the lipids in the colonies were characterized with TD-ESI/MS. As sample pretreatment was unnecessary, the analysis of the lipids in a bacterial colony growing on a Petri dish was completed within 1 min. The TD-ESI/MS results were further performed by principal component analysis (PCA) and hierarchical cluster analysis (HCA) to assist the classification of the bacteria, and a low relative standard deviation (5.2%) of the total ion current was obtained from repeated analyses of the lipids in a single bacterial colony. The PCA and HCA results indicated that different bacterial species were successfully distinguished by the differences in their lipid profiles as validated by the differences in their protein profiles recorded from the MALDI-TOF analysis. In addition, real-time monitoring of the changes in the specific lipids of a colony with growth time was also achieved with probe sampling and TD-ESI/MS. The developed analytical platform is promising as a useful diagnostic tool by which to rapidly distinguish bacterial species in clinical practice.  相似文献   

7.
Single‐stranded telomeric DNA tends to form a four‐base‐paired planar structure termed G‐quadruplex. Although kinds of G‐quadruplex structures in vitro have been documented in the presence of potassium or sodium, recognition of these DNA motifs (both in vitro and in vivo) is still an important issue in understanding the biological function of the G‐quadruplex structures in telomeres as well as developing anticancer agents. Herein we address this important question through the distinctive properties of a supramolecular system of cyanine dye 3,3′‐di(3‐sulfopropyl)‐4,5,4′,5′‐dibenzo‐9‐methyl‐thiacarbocyanine triethylammonium salt (MTC) upon binding to different DNA motifs. Interaction of MTC with hybrid/mixed G‐quadruplex results in a set of unique spectrophotometric signatures which are completely different from those arising from binding to other DNA motifs. Furthermore, such feature could be extended to map the locations of DNAs on interface. Linear duplex and mixed G‐quadruplex in human telomeres assembled on Au film and stained by MTC were directly recognized by confocal laser scanning microscopy (CLSM). All results suggested that MTC supramolecular system may be a good probe of specific G‐quadruplex structure.  相似文献   

8.
Lou C  Cong B  Li S  Fu L  Zhang X  Feng T  Su S  Ma C  Yu F  Ye J  Pei L 《Electrophoresis》2011,32(3-4):368-378
Single nucleotide polymorphisms (SNPs), which have relatively low mutation rates and can be genotyped after PCR with shorter amplicons compared with short tandem repeats (STRs), are being considered as potentially useful markers in forensic DNA analysis. Those SNPs with high heterozygosity and low Fst (F-statistics) in human populations are described as individual identification SNPs, which perform the same function as STRs used in forensic routine work. In the present study, we developed a multiplex typing method for analyzing 44 selected individual identification SNPs simultaneously by using multiplex PCR reaction in association with fluorescent labeled single base extension (SBE) technique. PCR primers were designed and the lengths of the amplicons ranged from 69 to 125?bp. The population genetics data of 79 unrelated Chinese individuals for the 44 SNP loci were investigated and a series of experiments were performed to validate the characteristic of the SNP multiplex typing assay, such as sensitivity, species specificity and the performance in paternity testing and analysis of highly degraded samples. The results showed that the 44-SNPs multiplex typing assay could be applied in forensic routine work and provide supplementary data when STRs analysis was partial or failed.  相似文献   

9.
Antimicrobial resistance (AMR), the ability of a bacterial species to resist the action of an antimicrobial drug, has been on the rise due to the widespread use of antimicrobial agents. Per the World Health Organization, AMR has an estimated annual cost of USD 34 billion in the US and is predicted to be the number one cause of death worldwide by 2050. One way AMR bacteria can spread, and by which individuals can contract AMR infections, is through contaminated water. Monitoring AMR bacteria in the environment currently requires that samples be transported to a central laboratory for slow and labor intensive tests. We have developed an inexpensive assay using paper‐based analytical devices (PADs) that can test for the presence of β‐lactamase‐mediated resistance. To demonstrate viability, the PAD was used to detect β‐lactam resistance in wastewater and sewage and identified resistance in individual bacterial species isolated from environmental water sources.  相似文献   

10.
In this study, we performed high-throughput and precise single nucleotide polymorphism (SNP) typing by fluorescent capillary electrophoresis single-strand conformation polymorphism (CE-SSCP) analysis. A system composed of a multicapillary DNA analyzer, a newly developed sieving matrix, four different colors of fluorescent labels, and a multiplex polymerase chain reaction (PCR) enabled low-cost and highly reliable SNP typing. Moreover, this system enabled the estimation of SNP allele frequencies using pooled DNA samples, which should be beneficial for large-scale association studies. Thus, fluorescent CE-SSCP analysis is a useful method for large-scale SNP typing.  相似文献   

11.
Hydrogen-bond (HB)-donor catalysts that bear a 2-aminoquinazolin-4-(1H)-one or a 3-aminobenzothiadiazine-1,1-dioxide skeleton have been developed, and it has been shown that these catalyst motifs act similarly to other HB-donor catalysts such as thioureas. The highly enantioselective hydrazination of 1,3-dicarbonyl compounds was realized even at room temperature with up to 96% ee for 2-aminoquinazolin-4-(1H)-one-type catalysts, which were more effective than the corresponding urea and thiourea catalysts. In addition, benzothiadiazine-1,1-dioxide-type catalysts were shown to promote the isomerization of alkynoates to allenoates with high enantioselectivity. To overcome the problem that the products were obtained as mixtures with the starting alkynoates, we developed the tandem isomerization and cycloaddition of alkynoates for the synthesis of advanced chiral compounds such as bicyclo[2.2.1]heptenes and 3-alkylidene pyrrolidine without a significant loss of enantioselectivity.  相似文献   

12.
An efficient tandem reaction for the asymmetric synthesis of six‐membered spirocyclic oxindoles has been successfully developed through a formal [2+2+2] annulation strategy. The amine‐catalysed stereoselective Michael addition of aliphatic aldehydes to electron‐deficient olefinic oxindole motifs gave chiral C3 components, which were further combined with diverse electrophiles (activated olefins or imines) to afford spirocyclic oxindoles with versatile molecular complexity (up to six contiguous stereogenic centres, high diastereo‐ and enantioselectivities).  相似文献   

13.
Microsatellite markers were developed for Cannabis sativa L. (marijuana) to be used for DNA typing (genotype identification) and to measure the genetic relationships between the different plants. Twelve different oligonucleotide probes were used to screen an enriched microsatellite library of Cannabis sativa in which 49% of the clones contained microsatellite sequences. Characterization of microsatellite loci in Cannabis revealed that GA/CT was the most abundant class of the isolated microsatellites representing 50% overall followed by GTT/CAA, AAG/TTC, and GAT/CTA representing 16%, 15%, and 10%, respectively. Eleven polymorphic STR markers were developed, three derived from dinucleotide motifs and eight from trinucleotide motifs. A total of 52 alleles were detected averaging 4.7 alleles/locus. The expected heterozygosity of the eleven loci ranged between 0.368 and 0.710 and the common probability of identical genotypes was 1.8×10–7. The loci identified 27 unique profiles of the 41 Cannabis samples. The 11 microsatellite markers developed in this study were found to be useful for DNA typing and for assessing genetic relatedness in Cannabis.  相似文献   

14.
Intramolecular folding in three tandem guanine repeats of human telomeric DNA has been investigated using optical-tweezers, MD simulation and circular dichroism. A mechanically and thermodynamically stable species in this sequence shows a structure consistent with a triplex conformation. A similar species has also been observed to coexist with a G-quadruplex in a DNA sequence with four tandem guanine repeats.  相似文献   

15.
Simple sequences are short regions of tandem repetitions of mono-, di-, tri-, or tetranucleotide motifs and occur as repetitive elements in all eukaryotic genomes. These regions tend to be hypervariable in length and can therefore be exploited for DNA fingerprinting purposes, using the polymerase chain reaction with primers flanking such regions. We describe how suitable simple-sequence loci can be isolated from any given eukaryotic DNA. We show the DNA sequences for a number of variants of such loci and discuss the current results on their usefulness for DNA fingerprinting.  相似文献   

16.
A multiple-primer DNA sequencing approach suitable for genotyping, detection and identification of microorganisms and viruses has been developed. In this new method two or more sequencing primers, combined in a pool, are added to a DNA sample of interest. The oligonucleotide that hybridizes to the DNA sample will function as a primer during the subsequent DNA sequencing procedure. This strategy is suited for selective detection and genotyping of relevant microorganisms and samples harboring different DNA targets such as multiple variant/infected samples as well as unspecific amplification products. This method is used here in a model system for detection and typing of high-risk oncogenic human papilloma viruses (HPVs) in samples containing multiple infections/variants or unspecific amplification products. Type-specific sequencing primers were designed for four of the most oncogenic (high-risk) HPV types (HPV-16, HPV-18, HPV-33, and HPV-45). The primers were combined and added to a sample containing a mixture of one high-risk (16, 18, 33, or 45) and one or two low-risk types. The DNA samples were sequenced by the Pyrosequencing technology and the Sanger dideoxy sequencing method. Correct genotyping was achieved in all tested combinations. This multiple-sequencing primer approach also improved the sequence data quality for samples containing unspecific amplification products. The new strategy is highly suitable for diagnostic typing of relevant species/genotypes of microorganisms.  相似文献   

17.
Stimuli-responsive switching molecules have been widely investigated for the purpose of the mechanical control of biomolecules. Recently developed arylazopyrazole (AAP) shows photoisomerization activity, displaying a faster response to light-induced conformational changes and unique absorption spectral properties compared with those of conventionally used azobenzene. Herein, it is demonstrated that AAP can be used as a photoswitching molecule to control photoinduced assembly and disassembly of DNA origami nanostructures. An AAP-modified DNA origami has been designed and constructed. It is observed that the repeated assembly and disassembly of AAP-modified X-shaped DNA origami and hexagonal origami with complementary strands can be achieved by alternating UV and visible-light irradiation. Closed and linear assemblies of AAP-modified X-shaped origami were successfully formed by photoirradiation, and more than 1 μm linear assemblies were formed. Finally, it is shown that the two photoswitches, AAP and azobenzene, can be used in tandem to independently control different assembly configurations by using different irradiation wavelengths. AAP can extend the variety of available wavelengths of photoswitches and stably result in the assembly and disassembly of various DNA origami nanostructures.  相似文献   

18.
SNPs are one of the main sources of DNA variation among humans. Their unique properties make them useful polymorphic markers for a wide range of fields, such as medicine, forensics, and population genetics. Although several high-throughput techniques have been (and are being) developed for the vast typing of SNPs in the medical context, population genetic studies involve the typing of few and select SNPs for targeted research. This results in SNPs having to be typed in multiple reactions, consuming large amounts of time and of DNA. In order to improve the current situation in the area of human Y-chromosome diversity studies, we decided to employ a system based on a multiplex oligo ligation assay/PCR (OLA/PCR) followed by CE to create a Y multiplex capable of distinguishing, in a single reaction, all the major haplogroups and as many subhaplogroups on the Y-chromosome phylogeny as possible. Our efforts resulted in the creation of a robust and accurate 35plex (35 SNPs in a single reaction) that when tested on 165 human DNA samples from different geographic areas, proved capable of assigning samples to their corresponding haplogroup.  相似文献   

19.
Lab‐on‐a‐chip provides an ideal platform for short tandem repeat (STR) genotyping due to its intrinsic low sample consumption, rapid analysis, and high‐throughput capability. One of the challenges, however, in the forensic human identification on the microdevice is the detection sensitivity derived from the nanoliter volume sample handling. To overcome such a sensitivity issue, here we developed a sample stacking CE microdevice for mini Y STR genotyping. The mini Y STR includes redesigned primer sequences to generate smaller‐sized PCR amplicons to enhance the PCR efficiency and the success rate for a low copy number and degraded DNA. The mini Y STR amplicons occupied in the 5‐ and 10‐mm stacking microchannels are preconcentrated efficiently in a defined narrow region through the optimized sample stacking CE scheme, resulting in more than tenfold improved fluorescence peak intensities compared with that of a conventional cross‐injection microcapillary electrophoresis method. Such signal enhancement allows us to successfully analyze the Y STR typing with only 25 pg of male genomic DNA, with high background of female genomic DNA, and with highly degraded male genomic DNA. The combination of the mini Y STR system with the novel sample stacking CE microdevice provides the highly sensitive Y STR typing on a chip, making it promising to perform high‐performance on‐site forensic human identification.  相似文献   

20.
With the firm demonstration of the in vivo presence and biological functions of many non‐B DNA structures, it is of great significance to understand their physiological roles from the perspective of structural conformation, stability, and transition kinetics. Although relatively simple in primary sequences compared to proteins, non‐B DNA species show rather versatile conformations and dynamic transitions. As the most‐studied non‐B DNA species, the G‐quadruplex displays a myriad of conformations that can interconvert between each other in different solutions. These features impose challenges for ensemble‐average techniques, such as X‐ray crystallography, NMR spectroscopy, and circular dichroism (CD), but leave room for single‐molecular approaches to illustrate the structure, stability, and transition kinetics of individual non‐B DNA species in a solution mixture. Deconvolution of the mixture can be further facilitated by statistical data treatment, such as iPoDNano (i ntegrated po pulation d econvolution with nano meter resolution), which resolves populations with subnanometer size differences. This Personal Account summarizes current mechanical unfolding and refolding methods to interrogate single non‐B DNA species, with an emphasis on DNA G‐quadruplexes and i‐motifs. These single‐molecule studies start to demonstrate that structures and transitions in non‐B DNA species can approach the complexity of those in RNA or proteins, which provides solid justification for the biological functions carried out by non‐B DNA species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号