首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Synthesis of mono- and bis(1,1′-bi-2-naphthocrown)ethers containing bis(2,6-methylene)anisyl subunit in the crown ring were developed. These chiral macrocycles are suitable precursors to introduce a chromogenic function, as exemplified by two novel crowned azophenol chromoionophores. Their coloration process induced by various achiral and chiral amines was studied by UV–vis spectrophotometry.  相似文献   

2.
KK Bisht  E Suresh 《Inorganic chemistry》2012,51(18):9577-9579
Metal-center-driven spontaneous resolution of a chiral coordination polymer, [Ni(SDB)(BIX)](n) (1), from achiral precursors has been probed by single-crystal X-ray diffraction and circular dichroism spectroscopy. Enantiomorphs 1P and 1M showed a parallel interpenetrated 2D → 3D chiral framework with (8(2).10) topology. Switching of the metal center under the same reaction parameters resulted in isostructural achiral and noninterpenetrating (4,4) grid-type sql networks [M(SDB)(BIX)](n), where M = Co(II), Zn(II), and Cd(II) for 2-4, respectively.  相似文献   

3.
An achiral crystal of a simple mononuclear copper complex [Cu(II)(C(6)H(8)N(2))(2)SO(4)]·H(2)O (1), on dipping into an aqueous azide solution, transforms into a chiral crystal of a coordination polymer [Cu(II)(C(6)H(8)N(2))(N(3))(2)](n) (2) in a solid-liquid interface reaction demonstrating replacement of a sulfate anion by an azide anion from an aqueous solution.  相似文献   

4.
The optimization of asymmetric catalysts for enantioselective synthesis has conventionally revolved around the synthesis and screening of enantiopure ligands. In contrast, we have optimized an asymmetric reaction by modification of a series of achiral ligands. Thus, employing (S)-3,3'-diphenyl BINOL [(S)-Ph(2)-BINOL] and a series of achiral diimine and diamine activators in the asymmetric addition of alkyl groups to benzaldehyde, we have observed enantiomeric excesses between 96% (R) and 75% (S) of 1-phenyl-1-propanol. Some of the ligands examined have low-energy chiral conformations that can contribute to the chiral environment of the catalyst. These include achiral diimine ligands with meso backbones that adopt chiral conformations, achiral diimine ligands with backbones that become axially chiral on coordination to metal centers, achiral diamine ligands that form stereocenters on coordination to metal centers, and achiral diamine ligands with pendant groups that have axially chiral conformations. Additionally, we have structurally characterized (Ph(2)-BINOLate)Zn(diimine) and (Ph(2)-BINOLate)Zn(diamine) complexes and studied their solution behavior.  相似文献   

5.
A family of novel chiral "calixsalen" Schiff base macrocycles R,R-H(3)L4, R,R-H(3)L5, containing three chiral diamino moieties were synthesized by an efficient self-assembly and characterized by (1)H and (13)C NMR, mass spectrometry, and X-ray diffraction. The systematic synthesis, structure, and coordination properties of the [2 + 2] and [3 + 3] Robson-type Schiff base macrocyclic mono-, di-, tri-, and tetranuclear metal complexes were explored.  相似文献   

6.
A series of complementary molecular strands from 2-mer to 5-mer that are composed of m-terphenyl units bearing chiral/achiral amidine or achiral carboxyl groups linked via Pt(II) acetylide complexes were synthesized by sequential stepwise reactions, and their chiroptical properties on the double-helix formation were investigated by circular dichroism (CD) and (1)H NMR spectroscopies. In CHCl(3), the "all-chiral" amidine strands consisting of (R)- or (S)-amidine units formed preferred-handed double helices with the complementary achiral carboxylic acid strands through the amidinium-carboxylate salt bridges, resulting in characteristic induced CDs in the Pt(II) acetylide complex regions, indicating that the chiral substituents on the amidine units biased a helical sense preference. The Cotton effect patterns and intensities were highly dependent on the molecular lengths. The complementary double-helix formation was also explored using the chiral/achiral amidine strands with different sequences in which a chiral amidine unit was introduced at the center (center-chiral) or a terminus (edge-chiral) of the amidine strands. The effect of the sequences of the chiral and achiral amidine units on the amplification of chirality (the "sergeants and soldiers" effect) in the double-helix formation was investigated by comparing the CD intensities with those of the corresponding all-chiral amidine double helices with the same molecular lengths. Variable-temperature CD experiments of the all-chiral and chiral/achiral amidine duplexes demonstrated that the Pt(II)-linked complementary duplexes are dynamic and their chiroptical properties including the chirality transfer from the chiral amidine unit to the achiral amidine ones are significantly affected by the molecular lengths, sequences, and temperatures. On the basis of the above results together with molecular dynamics simulation results, key structural features of the Pt(II)-linked oligomer duplexes and the effect of the chiral/achiral amidine sequences on the amplification of chirality are discussed.  相似文献   

7.
By incorporating an achiral diazine ligand, 2-pyridylmethylketazine, which can be locked in a chiral conformation upon coordination, into the manganese(II)-azido system, we induced a homochiral 2D network, in which neighboring Mn(II) ions are bridged via a diazine and two end-on azido ligands into chiral dimeric units, and neighboring units are interlinked via single end-to-end azido bridges. The interdimer chirality preservation is achieved via the homochiral 1D helical linkage formed by Mn(II) and end-to-end azido ions. The 2D layers are stacked in hetero- and homochiral fashion to yield simultaneously racemic and chiral crystals, indicating a partial spontaneous resolution. Both compounds behave as spin-canted weak ferromagnets, but the critical temperatures are different.  相似文献   

8.
Polymeric/oligomeric and macrocyclic (salophen)Ni(II) complexes have been synthesized starting from both an achiral biphenol dialdehyde and an optically active BINOL dialdehyde. It was found that these polysalophens contain nonplanar coordination of Ni(II) units that are paramagnetic. This is different from the previously reported (salophen)Ni(II) complexes which are square planar and diamagnetic. The nonplanar (salophen)Ni(II) units make the new polymeric Ni(II) complexes different from the helical structure proposed for chiral biaryl-based polymers containing square-planar (salophen)Ni(II) units. The copolymerization of the chiral binaphthyl monomer with the achiral biphenyl monomer demonstrates that the chirality of the binaphthyl unit is not propagated along the biphenyl polymer chain.  相似文献   

9.
An unusual ligand-conformation driving chiral generation and symmetry-breaking crystallization occurred simultaneously in the formation of a layered zinc(II) arsonate Zn(Hcapa)(4,4'-bipy) (1P) and its enantiomorph (1M) without any chiral sources, indicating that the asymmetrical crystallization of the coordination polymer from achiral precursors may be induced by the conformation control of the ligand.  相似文献   

10.
New 30-membered achiral and chiral polyaza macrocyclic ligands, L1 and L2 were synthesized directly from [3 + 3] condensation of phthalic dicarboxaldehyde with cis- and (1R,2R)-diaminocyclohexane, respectively. The trimeric macrocyclic structures were confirmed by electrospray ionization mass spectrometry (ESI-MS), 1H NMR, 13C NMR spectroscopy and elemental analysis. Potentiometry was used to determine the protonation constants of the ligands. UV-vis spectrophotometric titration was employed to investigate the coordination and conformational properties of the chiral ligand (L2). Direct enantioselective aldol reaction has been successfully performed using 4-nitrobenzaldehyde and acetone in the presence of the chiral macrocycle and its zinc(II) complexes as catalysts.  相似文献   

11.
The helical chirality of a Co(II) complex with a chiral tetradentate ligand is completely inverted from Lambda to Delta by the addition of achiral NO3- anion as an external stimulus.  相似文献   

12.
The underlying conceptual differences in exploiting two- and threefold rotational symmetry in the design of chiral ligands for asymmetric catalysis have been addressed in a comparative study of the catalytic performance of bisoxazoline (BOX) and tris(oxazolinyl)ethanes (trisox) containing copper(II) Lewis acid catalysts. The differences become apparent in constructing new catalysts by systematically "deforming" the stereodirecting ligand by inverting chiral centres or replacing chiral by achiral oxazolines. The catalytic alpha-amination of ethyl 2-methylacetoacetate with dibenzyl azodicaboxylate, which occurs with high enantioselectivity for both Ph(2)-BOX and Ph(3)-trisox copper catalysts, has been employed as the test reaction. In the trisox-copper complex [Cu(II)(iPr(3)-trisox)(kappa(2)-O,O'-MeCOCHCOOEt)](+)[BF(4)](-) (1), which was characterised by X-ray diffraction, two of the oxazoline groups are coordinated to the central copper atom, whilst the third oxazoline unit is dangling with the N-donor pointing away from the metal centre. A similar arrangement is found for the stereochemically "mixed" C(1)-trisox complex [Cu(II){(Ph(3)-trisox(R,S,S)}(kappa(2)-O,O'-MeCOCHCOOEt)(H(2)O)](+)[ClO(4)](-) (2), in which the phenyl substituents adopt a first coordination sphere meso arrangement. The almost identical selectivity of the Ph(3)-trisox(R,R,R)- and Ph(2)-BOX(R,R)-derived catalysts is as expected from the proposed model of the active catalyst based on a partially decoordinated podand. The behaviour of the "desymmetrised" trisox-Cu catalysts may be rationalised in terms of a general steady-state kinetic model for the three possible active bisoxazoline-copper species, which are expected to be in rapid exchange with each other in solution. This applies to both the trisox derivatives with stereochemically inverted and achiral oxazoline rings. The study underscores previous observations of superior performance of the catalysts bearing C(3)-chiral stereodirecting ligands as compared to systems of lower symmetry.  相似文献   

13.
Metal mediated in situ C-N coupling between 4,4'-azobipyridine and disodium-trans-glutaconate at room temperature has formed a new multifunctional linker Z-dhpe which subsequently self-assembles with Zn(II) or Cd(II) resulting in a chiral or an achiral metal-organic framework, respectively, depending on its different coordination modes.  相似文献   

14.
A new method of creating libraries of chiral diphosphines is presented. Supramolecular coordination compounds based on Ti, Rh, achiral ditopic ligands, and chiral diols were synthesized by in situ mixing and used as catalysts in the asymmetric hydrogenation of (Z)-methyl 2-acetamido-3-phenylacrylate, giving ee's of up to 92%. The ditopic ligands contain a Schiff base that coordinates to the assembly metal Ti and a phosphine as a ligand for Rh. Chirality is introduced by coordination of the chiral diols to Ti. The controlling chiral center and the substrate are separated by as much as 13 ?.  相似文献   

15.
Achiral and chiral linear trisphenol analogues of calixarene (HOArCH(2)Ar'(OH)C(R)HArOH, Ar = 4,6-di-tert-butylphenyl; Ar' = 4-tert-butylphenyl; R = H (achiral), Me (chiral)) were prepared in anticipation of their adoption of a chiral conformation upon coordination to Lewis acidic metal centers. The trisphenols react with 1 equiv of Ti(OR')(4) (R' = i-Pr or t-Bu) to yield complexes with molecular formula Ti(2)(OArCH(2)Ar'(O)C(R)HArO)(2)(OR')(2) (R = H, Me; R' = i-Pr or t-Bu). An X-ray crystal structure of the titanium complex of the achiral trisphenol (R = H; R' = t-Bu) reveals that the trisphenolate ligand adopts an unsymmetrical (and therefore chiral) conformation, with eta(2)-coordination to one metal center and eta(1)-coordination to the second metal center. The chiral trisphenol, which contains a stereogenic center (indicated as C in the shorthand notation used above), coordinates titanium in an analogous fashion to produce only one diastereomer (out of four possible); therefore, the configuration of the stereogenic center controls the conformation adopted by the bound ligand. The reaction of achiral trisphenol with AlMe(3) produces a compound with molecular formula Al(2)(OArCH(2)Ar'(O)CH(2)ArO)(2). (1)H NMR spectroscopy and X-ray crystallography reveal that the trisphenolate ligand adopts an asymmetric, C(2) conformation in this complex, where the central phenolate oxygen bridges the aluminum centers and the terminal phenolate oxygens each coordinate a separate aluminum center. Because these trisphenolate ligands adopt chiral conformations when coordinated to metal centers, they may be useful for developing diastereo- or enantioselective catalysts and reagents.  相似文献   

16.
A chiral charge-transfer (CT) complex was formed using achiral 9,10-bis(3,5-dihydroxyphenyl)anthracene (BDHA) as an electron donor and achiral 1,1′-dimethyl-4,4′-bipyridinium dichloride (MVCl2) as an electron acceptor. This chiral CT complex can include n-alkyl alcohol molecules as guests. On the other hand, when 1,1′-diphenyl-4,4′-bipyridinium dichloride and 1,1′-dibenzyl-4,4′-bipyridinium dichloride were used as electron acceptors, achiral CT complexes without guests were formed. It was found that the chiral crystallisation of the BDHA/MVCl2–CT host system was caused by steric and electric intermolecular interactions between host component molecules BDHA and MVCl2 during crystallisation.  相似文献   

17.
The oxidative kinetic resolution of secondary alcohols has been accomplished using 1:1 complexes of PdCl(2) and N-heterocyclic carbenes. In these reactions, both achiral and chiral carbene ligands are used in conjunction with the chiral base (-)-sparteine. A general synthesis of 1:1 PdCl(2)-carbene complexes has been developed and is amenable to a wide range of carbene ligands. The potential of these complexes in aerobic oxidations is highlighted by the use of a chiral Pd(II) complex and the chiral base (-)-sparteine to enhance the kinetic resolution of a racemic alcohol. [reaction--see text]  相似文献   

18.
Four enantiomerically pure 3D chiral POM-based compounds, [Ni(2)(bbi)(2)(H(2)O)(4)V(4)O(12)]2 H(2)O (1 a and 1 b) and [Co(bbi)(H(2)O)V(2)O(6)] (2 a and 2 b) (bbi=1,1'-(1,4-butanediyl)bisimidazole) based on the achiral ligand, different vanadate chains, and different metal centers have been synthesized by hydrothermal methods. Single-crystal X-ray diffraction analyses revealed that 1 a and 1 b, and 2 a and 2 b, respectively, are enantiomers. In 1 a and 1 b two kinds of vanadate chains with different screw axes link Ni cations to generate 3D chiral inorganic skeletons, which are connected by the achiral bbi ligands to form complicated 3D 3,4-connected chiral self-penetrating frameworks with (7(2)8)(7(2)8(2)9(2))(7(3)8(2)10) topology. They represent the first examples of chiral self-penetrating frameworks known for polyoxometalate (POM) systems. Contrary to 1 a and 1 b, in 2 a and 2 b the vanadate chains link Co(II) cations to generate 3D chiral inorganic skeletons, which are assembled from two kinds of heterometallic helical units of opposite chirality along the c axes. The chiral inorganic skeletons are connected by bbi to form 3D 3,4-connected chiral POM-based frameworks with (6(2)8)(2)(6(2)8(2)10(2)) topology. It is believed that the asymmetrical coordination modes of the metal cations in 1 a-2 b generate the initial chiral centers, and that the formation of the various helical units and the hydrogen bond interactions are responsible for preservation of the chirality and spontaneous resolution when the chirality is extended into the homochiral 3D-networks. This is the first known report of chiral POM-based compounds consisting of 3D chiral inorganic skeletons being obtained by spontaneous resolution upon crystallization in the absence of any chiral source, which may provide a rational strategy for synthesis of chiral POM-based compounds by using achiral ligands and POM helical units.  相似文献   

19.
We report an achiral bisphosphine rhodium complex equipped with a binding site for the recognition of chiral anion guests. Upon binding small chiral guests--cofactors--the rhodium complex becomes chiral and can thus be used for asymmetric catalysis. Screening of a library of cofactors revealed that the best cofactors lead to hydrogenation catalysts that form the products with high enantioselectivity (ee's up to 99%). Interestingly, a competition experiment shows that even in a mixture of 12 cofactors high ee is obtained, indicating that the complex based on the best cofactor dominates the catalysis.  相似文献   

20.
Supramolecular capsules can be used to change the activity and selectivity of a catalyst through the influence of the second coordination sphere, reminiscent of how enzymes control the selectivity of their processes. In enzymes, this approach is used to also control the enantioselectivity of reactions in which the active catalytic site is often not chiral but the second coordination sphere is. We are interested in the possibility to generate a chiral second coordination sphere around an otherwise achiral transition metal complex for asymmetric catalysis. In this paper we show that the ligand template approach can be used to generate a chiral second coordination sphere around a rhodium complex, which is used in asymmetric hydroformylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号