首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The supramolecular interplay of Me(3)Sn(+) and [M(CN)(2n)](n-) ions (n=3 and 4) with either 4,4'-bipyridine (bpy), trans-bis(4-pyridyl)ethene (bpe) or 4cyanopyridine (cpy) in the presence of H(2)O has been investigated for the first time. Crystal structures of the six novel assemblies: [(Me(3)Sn)(4)Mo(IV)(CN)(8).2 H(2)O.bpy] (8) and [(Me(3)Sn)(4)Mo(IV)(CN)(8).2 H(2)O.bpe] (8 a; isostructural), [(Me(3)Sn)(3)Fe(III)(CN)(6).4 H(2)O.bpy] (9), [(Me(3)Sn)(3)Co(III)(CN)(6).3 H(2)O.3/2 bpy] (10), [(Me(3)Sn)(4)Fe(II)(CN)(6).H(2)O.3/2 bpy] (11), and [(Me(3)Sn)(4)Ru(II)(CN)(6).2 H(2)O.3/2 cpy] (12) are presented. H(2)O molecules are usually coordinated to tin atoms and involved in two significant O-H.N hydrogen bonds, wherein the nitrogen atoms belong either to bpy (bpe, cpy) molecules or to M-coordinated cyanide ligands. Extended supramolecular assemblies such as -CN-->Sn(Me(3))<--O(H.)H.N(L)N.HO(H.)-->Sn(Me(3))<--NC- (L=bpy, bpe or cpy) function as efficient metal connectors (or spacers) in the structures of all six compounds. Only in the three-dimensional framework of 11, one third of all bpy molecules is involved in coordinative N-->Sn bonds. The supramolecular architecture of 9 involves virtually non-anchored (to cyanide N atoms), Me(3)Sn(+) units with a strictly planar SnC(3) skeleton, and two zeolitic H(2)O molecules. Pyrazine (pyz) is surprisingly reluctant to afford assemblies similar to 8-12, however, the genuine host-guest systems [(Me(3)Sn)(4)Mo(CN)(8).0.5pyz] and [(Me(3)Sn)(4)Mo(CN)(8).pym] (pym=pyrimidine) could be isolated and also structurally characterized.  相似文献   

2.
The organotin(IV) compounds [Me(2)Sn(L)(2)] (1), [Et(2)Sn(L)(2)] (2), [(n)Bu(2)Sn(L)(2)] (3), [(n)Oct(2)Sn(L)(2)] (4), [Ph(2)Sn(L)(2)] (5), and [PhOSnL](6) (6) have been synthesized from the reactions of 1-(4-chlorophenyl)-1-cyclopentanecarboxylic acid (HL) with the corresponding diorganotin(IV) oxide or dichloride. They were characterized by IR and multinuclear NMR spectroscopies, elemental analysis, cyclic voltammetry, and, for 2, 3, 4 and 6, single crystal X-ray diffraction analysis. While 1-5 are mononuclear diorganotin(IV) compounds, the X-ray diffraction of 6 discloses a hexameric drumlike structure with a prismatic Sn(6)O(6) core. All these complexes undergo irreversible reductions and were screened for their in vitro antitumor activities toward HL-60, BGC-823, Bel-7402, and KB human cancer cell lines. Within the mononuclear compounds, the most active ones (3, 5) are easiest to reduce (least cathodic reduction potentials), while the least active ones (1, 4) are the most difficult to reduce. Structural rearrangements (i.e., Sn-O bond cleavages and trans-to-cis isomerization) induced by reduction, which eventually can favor the bioactivity, are disclosed by theoretical/electrochemical studies.  相似文献   

3.
By reacting 1-aminoethylammonium (H2NCH2CH2NH3+ = enH+) salts of [Sn2E6]4- anions (E = S, Se), [enH]4[Sn2S6] (1) and [enH]4[Sn2Se6] x en (2), with FeCl2/LiCp, three novel (partly) oxidized, Cp* ligated iron chalcogenide clusters were synthesized. Two of them, [(CpFe)3(mu3-S)2] (3) and [(Cp*Fe)3(mu3-Se)2] (4), contain formally 47 valence electrons. [(Cp*Fe)3(SnCl3)(mu3-Se)4] x DME (5) represents the first known mixed metal Fe/Sn/Se heterocubane type cluster. Compounds 3-5 were structurally characterized by single-crystal X-ray diffraction, and the odd valence electron number of the [Fe3E2] clusters (E = S, Se) was confirmed by density functional (DFT) investigations, mass spectrometry, cyclic voltammetry and a susceptibility measurement of 3.  相似文献   

4.
Six novel organotin (IV) complexes, [(Me3Sn)2(H2O)2L] ( 1 ), [(R3Sn)2L]n (R = Me 2 , R = n‐Bu 3 ), [(Ph3Sn)2L] ( 4 ), [Me2SnL]n ( 5 ), [(Me2Sn)2L(μ3‐O)]n ( 6 ) have been designed and synthesized by the reactions of 4,4′‐oxybisbenzoic acid (H2L) and triorganotin (IV) chloride or oxide. All the complexes have been characterized by elemental analysis, FT‐IR, NMR, ESI‐Mass, PXRD and X‐ray crystallography. The single crystal diffraction reveals that complexes 1 and 4 represent dinuclear tin monomers. Complexes 2 and 3 display 2D network structure and 2D corrugated framework respectively, which both contain tetranuclear 36‐membered macrocycles. Furthermore, 2D structures are linked into a 3D supramolecular structures through intermolecular C‐H ··· π interactions. Complex 5 shows 1D infinite helical chain and further constructs 3D ladder supramolecular architecture through additional Sn ··· O and C‐H ··· O intermolecular interactions. Complex 6 displays 1D infinite polymeric chain containing 28‐membered macrocyclic ring. Preliminarily in vitro cytostatic activity studies on cervical carcinoma cell lines (HeLa) and hepatocellular carcinoma cell lines (HepG‐2) by MTT assay for some complexes reveal that complexes 3 and 4 exhibit high cytostatic activity. Further, complexes 3 and 4 were selected to investigate interactions of bovine serum albumin (BSA) by fluorescence quenching spectra and synchronous fluorescence spectra, which indicates that the complexes could quench the intrinsic fluorescence of BSA in a static quenching process.  相似文献   

5.
Organotin(IV) complexes with the formulas [(C6H5)3Sn(mbzt)] (1), [(C6H5)3Sn(cmbzt)] (3), and [(C6H5)2Sn(cmbzt)2] (4) (Hmbzt = 2-mercaptobenzothiazole and Hcmbzt = 5-chloro-2-mercaptobenzothiazole) have been synthesized and characterized by elemental analysis; FT-IR, Raman, 1H, 13C, and 119Sn NMR, and M?ssbauer spectroscopic techniques; and X-ray crystallography at various temperatures. The crystal structures of complexes 1, 3, and 4 were determined by X-ray diffraction at room temperature [295(1) or 293(2) K]. The complexes [(C6H5)3Sn(mbzo)] (2) and [(n-C4H9)2Sn(cmbzt)2] (5) (Hmbzo = 2-mercaptobenzoxazole) were synthesized by new improved methods, and their structures were determined at low temperature [100(1) K] and compared to those solved at room temperature. Comparison with {(CH3)2Sn(cmbzt)2]} (6), already reported, was also attempted. The influence of temperature on the geometry of the complexes is discussed. In the cases of complexes 1-3, three carbon atoms from phenyl groups and one sulfur atom and one nitrogen atom from thione ligands form a tetrahedrally distorted trigonal-bipyramidal geometry around the five-coordinate tin(IV) ion. In complexes 4-6, two carbon atoms from aryl groups and two sulfur atoms and two nitrogen atoms from thione ligands form a distorted tetrahedral geometry, tending toward octahedral, around the six-coordinate tin(IV) ions, with trans-C2, cis-N2, and cis-S2 configurations. Although the C-Sn and S-Sn bond distances are found to be constant in compounds 1-6, their N-Sn bond lengths vary significantly (from 2.635 to 3.078 A), with the longer distances found in the cases of five-coordinate complexes 1-3.  相似文献   

6.
A diorganotin(IV) complex [(CH3)2Sn]3L2(L=N'-acetylsalicyl-hydrazide) 1 has been successfully synthesized and structurally characterized by elemental analysis,FT-IR,NMR(1H,13C and 119Sn) spectra and X-ray crystallography.The crystal structure belongs to an orthorhombic system,space group Pnma with a=8.5047(16),b=28.466(5),c=12.842(2) ,V=3109.1(10)3,C24H32N4O6Sn3,Mr=828.61,Dc=1.770 g/cm3,μ(Mo-Kα)=2.432 mm-1,Z=4,F(000)=1608,the final R=0.0378 and wR=0.0973 for 2125 observed reflections(Ⅰ 2σ(Ⅰ)).The complex is a trinuclear organotin(Ⅳ) containing five-and six-coordinated tin atoms.And weak but significant Sn···O intermolecular interactions lead to the assembly of complex into a 1D linear polymeric chain supramolecular framework.  相似文献   

7.
Three tin(IV) complexes of 2‐benzoylpyridine N(4)‐phenylthiosemicarbazone (H2Bz4Ph) were prepared: [Sn(L)Cl3] (1), [BuSn(L)Cl2] (2) and [(Bu)2Sn(L)Cl] (3), in which L stands for the anionic ligand formed upon complexation with deprotonation and release of HCl. The complexes were characterized by a number of spectroscopic techniques. The crystal structures of H2Bz4Ph and complex 3 were determined. The antifungal activity of the ligand and its tin(IV) complexes was tested against Candida albicans. The thiosemicarbazone proved to be more active than the tin(IV) complexes. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

8.
Reduction of an N-heterocyclic carbene (NHC) adduct of SnCl(2), viz. [(IPr)SnCl(2)] (IPr = :C{N(Dip)C(H)}(2); Dip = 2,6-diisopropylphenyl), with a magnesium(i) dimer, has afforded the first NHC complex of a row 5 element in its diatomic form, [(IPr)Sn[double bond, length as m-dash]Sn(IPr)]; a computational analysis of the complex indicates that it comprises a singlet state, doubly bonded tin(0) fragment, :Sn[double bond, length as m-dash]Sn:, datively bonded by two NHC ligands.  相似文献   

9.
Acid-catalysed hydrolysis of [CH2[(Sn(Ph2)CH2Si(OiPr)Me2]2] followed by subsequent reaction with mercuric chloride in acetone afforded the novel silicon- and tin-containing eight-membered ring [cyclo-CH2[Sn(Cl2)CH2Si(Me2)]2O] in good yield, the crystal structure of which is reported. 119Sn NMR and X-ray studies indicate that [cyclo-CH2[Sn(Cl2)CH2Si(Me2)]2O] acts as a bidentate Lewis acid towards chloride ions exclusively forming the 1:1 complex [(Ph3P)2N]+[cyclo-CH2[Sn(Cl2)CH2Si(Me2)]2OCl]- upon addition of [(Ph3P)2N]+Cl- . Also reported are the synthesis and structure of [K(dibenzo[18]crown-6)]+[cyclo-CH2(Sn(Cl2)CH2Si(Me2)]2OF]-, the first completely characterised organostannate with a C2SnCl2F- substituent pattern. No ring-opening polymerisation could be achieved for [cyclo-CH2[Sn(Cl2)CH2Si(Me2)]2O] or for its perphenylated derivative [cyclo-CH2[Sn(Ph2)CH2Si(Me2)]2O]. The reaction of [cyclo-CH2[Sn(Cl2)CH2Si(Me2)]2O] with Me3O+BF4- gave the tin-containing fluorosilane [CH2[Sn(Cl2)CH2Si(F)Me2]2], in which the Si-F bond is activated by intermolecular Si-F...Sn interactions in the solid state.  相似文献   

10.
Wang LS  Sheng TL  Wang X  Chen DB  Hu SM  Fu RB  Xiang SC  Wu XT 《Inorganic chemistry》2008,47(10):4054-4059
Through the use of (Bu4N)2[Sn3S4(edt)3] (edt=SCH2CH2S(2-)) and Sn(SPh)4 as metalloligands, three neutral compounds have been obtained: [(Ph3P) 2Cu] 2SnS(edt)(2).2CH2Cl2.H2O (1a), [(Ph3P) 2Cu]2SnS(edt)2.2DMF.H2O (1b), and [(Ph3P)Cu] 2Sn(SPh)(6).3H 2O (2). Single-crystal X-ray diffraction studies revealed that compounds 1a and 1b contain the same neutral butterfly-like [(Ph3P)2Cu]2SnS(edt)2 cluster, which consists of one central SnS 5 dreich trigonal bipyramid sharing one vertex and two sides with two slightly distorted CuS 2P2 tetrahedrons. Compound 2 has a linear [(Ph3P)Cu]2Sn(SPh)6 cluster that is composed of a central distorted SnS 6 octahedron sharing two opposite planes with two slightly distorted CuS 3P tetrahedrons. Compound 1a exhibited an emission at 568 nm (tau=12.86 micros) in the solid state, while in CH 2Cl 2 solution, 1a exhibited a green emission at 534 nm (tau=4.75 micros). Compound 2 showed an intense red emission at 696 nm (tau=3.64 micros) upon excitation at 307 nm in the solid state.  相似文献   

11.
The diorganotin(IV) complexes of methyl 2‐{4‐hydroxy‐3‐[(2‐hydroxy‐phenylimino)‐methyl]‐phenylazo}‐benzoate (H2L) were obtained by the reaction of ortho‐aminophenol, R2SnO (R = Me, nBu, or Ph) and methyl 2‐[(E)‐(3‐formyl‐4‐hydroxy)diazenyl]benzoate (H2PL2) in ethanol, which led to diorganotin(IV) compounds of composition [Me2SnL]2 ( 1 ), nBu2SnL ( 2 ), and Ph2SnL ( 3 ) in good yield. The 1H, 13C, and 119Sn NMR, IR, the mass spectrometry along with elemental analyses allowed establishing the structure of ligand (H2L) and compounds 1–3 . In all the three cases, 119Sn chemical shifts are indicators of five‐coordinated Sn atoms in a solution state. The crystal structures of ligand H2L and complexes 1 and 2 were determined by a single crystal X‐ray diffraction study. In the solid state, the ligand H2L exists as a keto‐enamine tautomeric form. The molecular structure of complex 1 in the solid state shows a distorted octahedral geometry around a tin atom due to additional coordination with an oxygen atom from a neighboring molecule leading to a four‐membered ring with Sn‐O···Sn‐O intermolecular coordination, leading to a dimeric species. On the other hand, complex 2 is a monomer with trigonal bipyramidal geometry surrounding the tin atom. © 2012 Wiley Periodicals, Inc. Heteroatom Chem 23:457–465, 2012; View this article online at wileyonlinelibrary.com . DOI 10.1002/hc.21037  相似文献   

12.
Dilithiation of 1,2-(PH2)2C6H4 with nBuLi followed by reaction with Sn(NMe2)2 in the presence of the Lewis base donor tmeda [Me2NCH2CH2NMe2] gives [(C6H4P2Sn)(Li.tmeda)2] , containing the phosphide-stabilised, 6pi stannylene dianion [C6H4P2Sn]2-.  相似文献   

13.
The synthesis of new functionalized organotin‐chalcogenide complexes was achieved by systematic optimization of the reaction conditions. The structures of compounds [(R1, 2Sn)3S4Cl] ( 1 , 2 ), [((R2Sn)2SnS4)2(μ‐S)2] ( 3 ), [(R1, 2Sn)3Se4][SnCl3] ( 4, 5 ), and [Li(thf)n][(R3Sn)(HR3Sn)2Se4Cl] ( 6 ), in which R1=CMe2CH2C(O)Me, R2=CMe2CH2C(NNH2)Me, and R3=CH2CH2COO, are based on defect heterocubane scaffolds, as shown by X‐ray diffraction, 119Sn NMR spectroscopy, and ESI mass spectrometry analyses. Compounds 4 , 5 , and 6 constitute the first examples of defect heterocubane‐type metal‐chalcogenide complexes that are comprised of selenide ligands. Comprehensive DFT calculations prompted us to search for the formal intermediates [(R1SnCl2)2(μ‐S)] ( 7 ) and [(R1SnCl)2(μ‐S)2] ( 8 ), which were isolated and helped to understand the stepwise formation of compounds 1 – 6 .  相似文献   

14.
Seven novel R2Sn(IV)-oxydiacetate (oda) and -iminodiacetate (ida) compounds of the form [R2Sn(oda)(H2O)]2 (R = Me, nBu, and Ph) (1-3), [(R2SnCl)2(oda)(H2O)2]n (R = Et, iBu, and tBu) (4-6), and [Me2Sn(ida)(MeOH)]2 (7) have been synthesized and characterized by IR, 1H, 13C, and 119Sn NMR (solution), solid-state 119Sn CPMAS NMR, and (119m)Sn M?ssbauer spectroscopy. The crystal structure of [Me2Sn(oda)(H2O)]2, 1, shows it to be dinuclear (centrosymmetric), with two seven-coordinated tin atoms, bridged by one arm of the carboxylate group from each oda. By contrast, the crystal structure of [(Et2SnCl)2(oda)(H2O)2]n, 4, comprises a zigzag polymeric assembly containing a pair of different alternating subunits, {Et2SnCl(H2O)} and {Et2SnCl(H2O)(oda)}, which are connected by way of bridging oda carboxylates, thus giving seven-coordinate tin centers in both components. Finally, the structure of [Me2Sn(ida)(MeOH)]2, 7, also centrosymmetric dinuclear, is comprised of a pair of mononuclear units with seven-coordinate tin. The 119Sn solid-state CPMAS NMR and (119m)Sn Mossbauer suggest the presence of seven-coordinate Sn metal atoms in some derivatives and the existence of two different tin sites in the [(R2SnCl)2(oda)(H2O)2]n compounds.  相似文献   

15.
Fifteen new tris[(4-fluorophenyldimethylsilyl)methyl]tin O,O-dialkyldithiophosphates were synthesized and characterized by IR, 1 H NMR, MS spectroscopy, x-ray diffraction, and elemental analysis. The crystal structure of [(4-FC 6 H 4 SiMe 2 CH 2 ) 3 Sn] 2 O has been determined. The structure consists of four-coordinated tin atoms in a slightly distorted tetrahedral geometry with an O atom bridge between the two Sn atoms.  相似文献   

16.
Dias HV  Jin W 《Inorganic chemistry》1996,35(22):6546-6551
The N-methyl-2-(methylamino)troponimine [(Me)(2)ATI]H reacts with bis[bis(trimethylsilyl)amido]tin(II) to yield [(Me)(2)ATI](2)Sn in excellent yield. The treatment of [(Me)(2)ATI](2)Sn with GaI and InCl led to the bis(ligand)gallium(III) and -indium(III) compounds [(Me)(2)ATI](2)GaI and [(Me)(2)ATI](2)InCl. These metal complexes were characterized by elemental analysis, (1)H and (13)C NMR spectroscopy, and X-ray crystallography. All three metal adducts show fluxional behavior in solution at room temperature. [(Me)(2)ATI](2)Sn exhibits a pseudo trigonal bipyramidal structure in the solid state. The gallium and indium atoms in [(Me)(2)ATI](2)GaI and [(Me)(2)ATI](2)InCl adopt trigonal bipyramidal geometry around the metal center with the halide occupying an equatorial site. A convenient, high-yield route to [(Me)(2)ATI]H is also reported. Crystal data with Mo Kalpha (lambda = 0.710 73 ?) at 183 K: [(Me)(2)ATI](2)Sn, C(18)H(22)N(4)Sn, a = 8.4347(11) ?, b = 10.5564(13) ?, c = 11.5527(11) ?, alpha = 66.931(8) degrees, beta = 73.579(9) degrees, gamma = 67.437(7) degrees, V = 863.3(2) ?(3), triclinic, space group P&onemacr;, Z = 2, R = 0.0224; [(Me)(2)ATI](2)GaI, C(18)H(22)GaIN(4), a = 12.947(2) ?, b = 9.5834(9) ?, c = 16.0132(12) ?, beta = 107.418(8) degrees, V = 1895.8(3) ?(3), monoclinic, space group P2(1)/c, Z = 4, R = 0.0214; [(Me)(2)ATI](2)InCl, C(18)H(22)ClInN(4), a = 24.337(3) ?, b = 8.004(2) ?, c = 19.339(3) ?, beta = 101.537(13) degrees, V = 3691.1(11) ?(3), monoclinic, space group C2/c, Z = 8, R = 0.0224.  相似文献   

17.
Bis(toluene)iron 9 reacts with Lappert's stannylene [Sn[CH(SiMe3)2]2] (4) to form the paramagnetic bis-stannylene complex [[(eta6-toluene)Fe-Sn-[CH(SiMe3)2]2]2] (10). Compound 10 reacts with H2O to form the hydroxo hydrido complex [(eta6-C7H8)(mu-OH)(H)-Fe-[Sn[CH(SiMe3)2]2]2] (12) in high yield; its solid-state structure has been elucidated by X-ray and neutron diffraction analysis. In agreement with the 1H NMR results, 12 contains a hydridic ligand whose exact coordination geometry could be determined by neutron diffraction. The 1H and 119Sn NMR analysis of 12 suggested a multicenter Sn/Sn/H/Fe bonding interaction in solution, based on significantly large values of J(Sn,H,Fe) = 640+/-30 Hz and J(119Sn,119Sn) = 4340+/-100 Hz. In solution, complex 12 exists as two diastereomers in a ratio of about 2:1. Neutron diffraction analysis has characterized 12 as a classical metal hydride complex with very little Sn...H interaction and a typical Fe-H single bond (1.575(8) A). This conclusion is based on the fact that the values of the Sn...H contact distances (2.482(9) and 2.499(9) A) are not consistent with strong Fe-H...Sn interactions. This finding is discussed in relation to other compounds containing M-H...Sn units with and without strong three-center interactions. The neutron diffraction analysis of 12 represents the first determination of a Sn-H atomic distance employing this analytical technique. The cobalt analogues [(eta5-Cp)(mu-OH)(H)Co-[Sn[CH(SiMe3)2]2]2] (15) and [(eta5-Cp)(OD)(D)Co-[Sn[CH-(SiMe3)2]2]2] [D2]15, which are isolobal with 12, were prepared by the reaction of [(eta5-Cp)Co-Sn[CH(SiMe3)2]2] (14) with H2O and D2O, respectively. The magnitude of J(Sn,H) (539 Hz) in 15 is in the same range as that found for 12. The molecular structure of 15 has been determined by X-ray diffraction which reveals it to be isostructural with 12. The coordination geometries of the Co(Fe)-Sn1-O-Sn2 arrangements in 12 and 15 are fully planar within experimental error. Compounds 10 and 15 are rare examples of fully characterized complexes obtained as primary products from water activation reactions.  相似文献   

18.
The reaction of cis-Ru(acac)2(CH3CN)2 (acac = acetylacetonate) with 2,2'-dipyridylamine (L) in ethanolic medium resulted in facile one-pot synthesis of stable [(acac)2RuIII(L)]ClO4 ([1]ClO4), trans-[(acac)2RuII(L)2] (2), trans-[(acac)2RuIII)L)2]ClO4 ([2]ClO4), and cis-[(acac)2RuII(L)2] (3). The bivalent congener 1 was generated via electrochemical reduction of [1]ClO4. Although in [1]+ the dipyridylamine ligand (L) is bonded to the metal ion in usual bidentate fashion, in 2/[2]+ and 3, the unusual monodentate binding mode of L has been preferentially stabilized. Moreover, in 2/[2]+ and 3, two such monodentate L's have been oriented in the trans- and cis-configurations, respectively. The binding mode of L and the isomeric geometries of the complexes were established by their single-crystal X-ray structures. The redox stability of the Ru(II) state follows the order 1 < 2 < 3. In contrast to the magnetic moment obtained for [1]ClO4, mu = 1.84 muB at 298 K, typical for low-spin Ru(III) species, the compound [2]ClO4 exhibited an anomalous magnetic moment of 2.71 muB at 300 K in the solid state. The variable-temperature magnetic measurements showed a pronounced decrease of the magnetic moment with the temperature, and that dropped to 1.59 muB at 3 K. The experimental data can be fitted satisfactorily using eq 2 that considered nonquenched spin-orbit coupling and Weiss constant in addition to the temperature-independent paramagnetism. [1]ClO4 and [2]ClO4 displayed rhombic and axial EPR spectra, respectively, in both the solid and the solution states at 77 K.  相似文献   

19.
Condensation of Ph(2)PH and paraformaldehyde with 2-amino-7-methyl-1,8-naphthyridine gave the new flexible tridentate ligand 2-[N-(diphenylphosphino)methyl]amino-7-methyl-1,8-naphthyridine (L). Reaction of L with [Cu(CH(3)CN)(4)]BF(4) and/or different ancillary ligands in dichloromethane afforded N,P chelating or bridging luminescent complexes [(L)(2)Cu(2)](BF(4))(2), [(micro-L)(2)Cu(2)(PPh(3))(2)](BF(4))(2) and [(L)Cu(CNN)]BF(4) (CNN = 6-phenyl-2,2'-bipyridine), respectively. Complexes [(L)(2)Pt]Cl(2), [(L)(2)Pt](ClO(4))(2) and [(L)Pt(CNC)]Cl (CNC = 2,6-biphenylpyridine) were obtained from the reactions of Pt(SMe(2))(2)Cl(2) or (CNC)Pt(DMSO)Cl with L. The crystal structures and photophysical properties of the complexes are presented.  相似文献   

20.
Eichler JF  Just O  Rees WS 《Inorganic chemistry》2006,45(17):6706-6712
The heteroleptic lithium amide, [(Me3Sn)(Me3Ge)NLi.(Et2O)]2 (2), reacts with MCl(2) (M = Sn, Ge, Pb) to yield the corresponding cubane complexes [M(mu3-NGeMe3)]4 [M = Sn (3), Ge (4), Pb (5)]. In an analogous reaction with SnCl2, the lithium stannylamide, [(Me3Sn)2NLi.(Et2O)]2 (1), produces the mixed-valent Sn congener [Sn(mu3-NSnMe3)]4 (6). All imidocubanes contain both di- and tetravalent group 14 metals that are bridged by N. These structures are comprised of M4N4 (M = Sn, Pb, Ge) cores that possess varying distortion from perfect cube geometry. The Pb derivative (5) exhibits enhanced volatility and vapor-phase integrity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号