首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The SbF?6 ion is found to lose its Oh symmetry when isolated within RbI and RbBr lattices. The most likely symmetry is D2h. ν3(F1u) and ν4(F1u) each split into three infrared active components. Two components are observed in the infrared from the previously inactive ν6 (F2u under Oh) but no infrared absorption has been observed for those modes which were Raman active under Oh symmetry.  相似文献   

2.
L‐Cysteine hydrogen fluoride, or bis(L‐cysteinium) difluoride–L‐cysteine–hydrogen fluoride (1/1/1), 2C3H8NO2S+·2F·C3H7NO2S·HF or L‐Cys+(L‐Cys...L‐Cys+)F(F...H—F), provides the first example of a structure with cations of the `triglycine sulfate' type, i.e.A+(A...A+) (where A and A+ are the zwitterionic and cationic states of an amino acid, respectively), without a doubly charged counter‐ion. The salt crystallizes in the monoclinic system with the space group P21. The dimeric (L‐Cys...L‐Cys+) cation and the dimeric (F...H—F) anion are formed via strong O—H...O or F—H...F hydrogen bonds, respectively, with very short O...O [2.4438 (19) Å] and F...F distances [2.2676 (17) Å]. The F...F distance is significantly shorter than in solid hydrogen fluoride. Additionally, there is another very short hydrogen bond, of O—H...F type, formed by a L‐cysteinium cation and a fluoride ion. The corresponding O...F distance of 2.3412 (19) Å seems to be the shortest among O—H...F and F—H...O hydrogen bonds known to date. The single‐crystal X‐ray diffraction study was complemented by IR spectroscopy. Of special interest was the spectral region of vibrations related to the above‐mentioned hydrogen bonds.  相似文献   

3.
Synthesis and Crystal Structures of the Complexes trans ‐[CoIII(py)4F2][H2F3] and [Pd(py)4]F2 · 1.5 HF · 2 H2O The cobalt complex trans‐[Co(III)(py)4F2][H2F3] ( 1 ) has been prepared by electrochemical oxidation of CoF2 in a pyridine/HF mixture and the palladium complex [Pd(py)4]F2 · 1.5 HF · 2 H2O ( 2 ) has been obtained via halogen exchange between Pd(py)2Cl2 and AgF2 in pyridine. 1 and 2 crystallize in the space group C2/c with a = 27.928(14), b = 9.019(3), c = 18.335(8) Å, β = 113.41(3)° for 1 and a = 28.183(9), b = 9.399(3), c = 17.397(6) Å, β = 104.66(3)° for 2 , respectively. Concerning the shape and location of the M(py)4 fragments 1 and 2 are isostructural. The metal atoms occupy special positions in their unit cells with the result that four complex atoms have C2 symmetry and four complex cations have Ci symmetry giving a total of Z = 8. In 1 two F ions complete an octahedral coordination around the Co atoms (Co–F 1.820(2) to 1.834(3) Å). In 2 the shortest Pd–F distance is 3.031(2) Å. This precludes the existence of Pd–F bonds. In 1 one can identify H2F3 groups. In 2 there are larger aggregates, consisting of F, HF, and H2O subunits, connected by H‐bridges. In spite of these differences, both complexes belong to the same type of structure, which may be of a common type Mx+(py)4Fx · y HF · z H2O.  相似文献   

4.
The Raman spectra of crystals built solely of metaborate triangles provide fingerprint identification of three distinct network types. Classified according to increasing cation field strength these are: rings with degenerate intra-annular bonds and D3h symmetry, distorted rings with alternating intra-annular bonds and C3h symmetry, as well as chains. The occurrence of each network type has been associated with a characteristic range of cationic field strength. This approach led to the discovery of a hitherto unknown C3h ring strontium metaborate crystal, with Sr2+ cations in 9- or 10-fold coordination to oxygen atoms. The Raman spectra of the mixed cation metaborates Ba2Ca(B2O4)3 and Ba2Mg(B2O4)3 confirm their C3h-ring structure and clearly point to the fact that the synergetic effect of dissimilar cations to the metaborate network cannot be predicted by the additivity of their field strengths.  相似文献   

5.
Concentrated aqueous solutions of strontium chloride and barium chloride, respectively, allow on addition of the potassium salt of tetrathiosquarate, K2C4S4·H2O, the isolation of the earth alkaline salts SrC4S4·4 H2O ( 1 ) and Ba4K2(C4S4)5·16 H2O ( 2 ), both as dark red crystals. The crystal structure determinations ( 1 : orthorhombic, Pnma, a = 8.149(1), b = 12.907(2), c = 10.790(2) Å, Z = 4; 2 : orthorhombic, Pbca, a = 15.875(3), b = 21.325(5), c = 16.119(1) Å, Z = 4) show the presence of C4S42− ions with only slightly distorted D4h symmetry having average C–C and C–S bond lengths of 1.41Å and 1.681Å for 1 and 1.450Å and 1.657Å for 2 . The structure of 1 contains concatenated edge‐sharing Sr(H2O)6S2 polyhedra. The Sr2+ ions are in eight‐fold coordination with Sr–O distances of 2.50–2.72Å and Sr–S distances of 3.21Å, (C4S4)2− acts as a chelating ligand towards Sr2+. The structure is closely related to the previously reported Ca2+ containing analogue, which is of lower symmetry belonging to the monoclinic crystal system. A supergroup‐subgroup relation between the space groups of both structures is present. The structure of 2 is made up of Ba2+ and K+ ions in eight and nine‐fold coordination by H2O molecules and (C4S4)2− ions which act as chelating ligands towards one cation and bridging between two cations. The coordination polyhedra of the cations are connected by common edges and corners in two dimensions to layers which are connected by tetrathiosquarate ions to a three‐dimensional network. The infrared and Raman spectra show bands typical for the molecular building units of the two compounds.  相似文献   

6.
Yu-Fen Xiu  Li Xu 《中国化学》1992,10(2):130-137
The synthesis and the structural characterization of the title compound H2Na3[W3O(CCH3)-(O2CCH3)6(H2O)3][H2W12O40]·13.5H2O are described. It is known that the mixed oxo-ethylidynecapped tritungsten cluster can be obtained by Zn dust reduction of Na2WO4·2H2O in acetic anhydride. The title compound has been characterized by X-ray diffraction, UV/VIS and 1H NMR spectra. The tungsten atoms in the cluster cation and anion are in the oxidation states of W(IV) and W(VI) respectively. The crystal is rhombohedral with the space group R32, a = 17.058 (3)Å, c = 49.665 (9)Å, γ=120°, V=12516(9)Å3, Z=6, final R = 0.037 for 2071 reflections with I ≥3σ (I). Both the cluster cation and anion have a C3 symmetry. The important interatomic distances in angstroms for the cluster cation are: W—W, 2.730(2); W—μ3?O, 2.00; W—O (carboxy1), 2.12; W—Ot 2.18 (2).  相似文献   

7.
Preparation and Properties of Tetra(n-butyl)ammonium cis -Trifluorophthalocyaninato(2–)zirconate(IV) and -hafnate(IV); Crystal Structure of (nBu4N) cis [Hf(F)3pc2–] cis-Dichlorophthalocyaninato(2–)metal(IV) of zirconium and hafnium reacts with excess tetra(n-butyl)-ammoniumfluoride trihydrate to yield tetra(n-butyl)-ammonium cis-trifluorophthalocyaninato(2–)metalate(IV), (nBu4N)cis[M(F)3pc2–] (M = Zr, Hf). (nBu4N)cis[Hf(F)3pc2–] crystallizes in the monoclinic space group P21/n (# 14) with cell parameters a = 13.517(1) Å, b = 13.856(1) Å, c = 23.384(2) Å, α = 92.67(1)°, Z = 4. The Hf atom is in a ”︁square base-trigonal cap”︁”︁ polyhedron, coordinating three fluorine atoms and four isoindole nitrogen atoms (Niso). The Hf atom is sandwiched between the (Niso)4 and F3 planes (d(Hf–CtN) = 1.218(3) Å; d(Hf–CtF) = 1.229(3) Å; CtN/F: centre of the (Niso)4, respectively F3 plane). The average Hf–Niso and Hf–F distances are 2.298 and 1.964 Å, respectively, the average F–Hf–F angle is 84.9°. The pc2– ligand is concavely distorted. The optical spectra show the typical metal independent π-π* transitions of the pc2– ligand at c. 14700 and 29000 cm–1. In the FIR/MIR spectra vibrations of the MF3 skeleton are detected at 545, 489, 274 cm–1 (M = Zr) and 536, 484, 263 cm–1 (M = Hf), respectively.  相似文献   

8.
The asymmetric unit of the title compound, [Ag(NH3)2][Ag(C7H5N2O4)2], comprises half an [Ag(NH3)2]+ cation and half an [Ag(anbz)2] anion (anbz is 2‐amino‐5‐nitrobenzoate). Both AgI ions are located on inversion centres. The cation has a linear coordination geometry with two symmetry‐related ammine ligands. The AgI cation in the anionic part shows a rare four‐coordinate planar geometry completed by two chelating symmetry‐related anbz ligands. Intra‐ and intermolecular N—H...O hydrogen bonds create a slightly undulating two‐dimensional supramolecular sheet. Adjacent sheets are only ca 3.3 Å apart. Ag...O, Ag...N and π–π stacking interactions consolidate the packing of the molecules in the solid state.  相似文献   

9.
Crystalline Na3B3O3F6 was synthesized from H3BO3 and NaBF4 at 623 K, alternatively NaBO2 can be reacted with NaBF4 at 673 K. The title compound (C2/c, a = 11.866(7), b = 6.901(4), c = 9.367(6) Å, β = 113.724(9)°) contains the cyclo‐fluorooxotriborate anion B3O3F63–, which displays a planar B3O3 ring. Within the margins of experimental error, its point group symmetry is D3h. Layers of fluorinated boroxine rings and sodium atoms are stacked in an alternating manner in parallel to the ab plane. The novel sodium fluorooxoborate is a poor sodium ion conductor with conductivities of 8.7 × 10–5 and 3.6 × 10–3 S · cm–1 at 523 and 623 K, respectively.  相似文献   

10.
Reactions of (NH4)2MS4, AgBr and CuBr in γ-methylpyridine produced one new compound, [MS4Cu4(γ-MePy)8][M6O19] (1, M = W; 2 , M = Mo), of which 1 was characterized by single crystal X-ray analysis. The crystal data: orthorhombic, Pbcn, a = 15.434(4), b = 16.732(2), c = 28.657(7) Å, V = 7400.8(8) Å3, Z = 4 , R = 0.072 for 3121 independent data. The compound is the first example which contains both polyoxotungstate anion and heteropolynuclear cluster cation. In the structure of the cation four edges of the tetrahedral WS2?4 core are coordinated by four copper atoms, giving a WS4Cu4 aggregate of approximate D2h symmetry. The differences between the reaction of Cu+ with MS2?4 and that of Ag+ with MS2?4 in pyridine and its derivatives are discussed.  相似文献   

11.
A new linear bismuth(III) coordination polymer, catena‐poly[[chloridobismuth(III)]‐μ3‐1,10‐phenanthroline‐2,9‐dicarboxylato‐κ6O2:O2,N1,N10,O9:O9], [Bi(C14H6N2O4)Cl]n, has been obtained by an ionothermal method and characterized by elemental analysis, energy‐dispersive X‐ray spectroscopy, IR spectroscopy, thermal stability studies and single‐crystal X‐ray diffraction. The structure is constructed by Bi(C14H6N2O4)Cl fragments in which each BiIII centre is seven‐coordinated by one Cl atom, four O atoms and two N atoms. The coordination geometry of the BiIII cation is distorted pentagonal–bipyramidal (BiO4N2Cl), with one bridging carboxylate O atom and one Cl atom located in the axial positions. The Bi(C14H6N2O4)Cl fragments are further extended into a one‐dimensional linear polymeric structure via subsequent but different centres of symmetry (bridging carboxylate O atoms). Neighbouring linear chains are assembled via weak C—H...O and C—H...Cl hydrogen bonds, forming a three‐dimensional supramolecular architecture. Intermolecular π–π stacking interactions are observed, with centroid‐to‐centroid distances of 3.678 (4) Å, which further stabilize the structure. In addition, the solid‐state fluorescence properties of the title coordination polymer were investigated.  相似文献   

12.
The syntheses and crystal structures of the closely related but non-isostructural Cd2(C19H21N3O3F)4(H2O)2?·?4H2O (1) and Pb2(C19H21N3O3F)4?·?4H2O (2) are described, where C19H21N3O3F? is enrofloxacinate (enro). Both compounds contain centrosymmetric, binuclear, neutral complexes incorporating a central diamond-shaped M2O2 (M?=?Cd, Pb) structural unit. The Cd2+ coordination polyhedron in 1 is a CdO6 trigonal prism, including one coordinated water. The Pb2+ coordination polyhedron in 2 can be described as a very distorted square-based PbO5 pyramid, although two additional short Pb?···?O (<3.1?Å) contacts are also present. In the crystal of the cadmium complex, O–H?···?O hydrogen bonds lead to a layered structure. In the lead compound, O–H?···?O and O–H?···?N interactions lead to chains in the crystal. Crystal data: 1: C76H96Cd2F4N12O18, M r?=?1766.45, triclinic, P 1, a?=?12.185(2)?Å, b?=?12.306(3)?Å, c?=?14.826(3)?Å, α?=?68.15(3)°, β?=?70.28(3)°, γ?=?86.11(3)°, V?=?1938.2(7)?Å3, Z?=?1, T?=?298 K, R(F)?=?0.030, wR(F 2)?=?0.079. 2: C76H88F4N12O16Pb2, M r?=?1920.00, triclinic, P 1, a?=?12.0283(4)?Å, b?=?12.7465(4)?Å, c?=?13.0585(4)?Å, α?=?83.751(1)°, β?=?74.635(1)°, γ?=?81.502(1)°, V?=?1904.3(1)?Å3, Z?=?1, T?=?298?K, R(F)?=?0.021, wR(F 2)?=?0.049.  相似文献   

13.
In the title compound, [CrBr2(C5H14N2)2]2Br2·HClO4·6H2O, there are two independent CrIII complex cations which are conformational isomers of each other. The Cr atoms lie respectively on a center of symmetry and on a mirror plane and have octahedral environments, coordinated by the N atoms of two 2,2‐di­methylpropane‐1,3‐diamine ligands and by two Br atoms in trans positions. The Cr—N and Cr—Br bond lengths are in the ranges 2.078 (3)–2.089 (3) and 2.4495 (9)–2.5017 (9) Å, respectively. The crystal structure consists of two CrIII complex cations, two Br? anions, a (ClO4)? anion and an [H13O6]+ hydrogen‐bonded cluster cation.  相似文献   

14.
Transparent orange crystals of [Yb(MeCp)2(O2CC6F5)]2 and [Yb(MeCp)2(O2C‐o‐HC6F4)]2 were obtained by oxidation of Yb(MeCp)2 with M(O2CR) (M = 1/2 Hg, Tl; R = C6F5, o‐HC6F4) in tetrahydrofuran. They have a dimeric structure with bridging bidentate (O, O')‐benzoate groups and eight coordinated ytterbium. Both crystallise isotypic in the orthorhombic space group Pbca. Room temperature as well as low temperature single crystal X‐ray investigations show the o‐H/F positions in [Yb(MeCp)2(O2C‐o‐HC6F4)]2 not to be ordered.  相似文献   

15.
The title compound, (C4H12N)4[Ta6Cl18]Cl, crystallizes in the cubic space group . The crystal structure contains two different types of coordination polyhedra, i.e. four tetrahedral [(CH3)4N]+ cations and one octahedral [(Ta6Cl12)Cl6]3− cluster anion, and one Cl ion. The presence of three different kinds of Cl atoms [bridging (μ2), terminal and counter‐anion] in one mol­ecule makes this substance unique in the chemistry of hexanuclear halide clusters of niobium and tantalum. The Ta6 octahedron has an ideal Oh symmetry, with a Ta—Ta interatomic distance of 2.9215 (7) Å.  相似文献   

16.
The crystal structure of β-MnF4 has finally been elucidated. It crystallizes in the non-centrosymmetric space group R3c, no. 161, hR360, with the lattice parameters a = 19.390(3), c = 12.940(3) Å, V = 4213.3(14) Å3, Z = 72, T = 100 K. It is a 4a × 4a superstructure of the VF3 (FeF3) structure type. The Mn atoms are coordinated octahedron-like by F atoms, of which two are bound terminal, while the other act as μ-bridging F atoms to other Mn atoms forming a three-dimensional infinite network structure which can be described by the Niggli formula 3[MnF4/2F2/1]. Voids on the metal sites, which are occupied in the VF3 structure, are grouped together in the shape of a “star” with approximate D3h symmetry. We prepared β-MnF4 photochemically according to the literature and obtained a phase-pure powder as evidenced by X-ray diffraction at room temperature. The lattice parameters are a = 19.566(3), c = 12.984(2) Å, V = 4304(1) Å3. IR and Raman spectra recorded on the powder show that β-MnF4 has also been obtained free of moisture, HF, and O2+ containing compounds, however MnF3 is likely present as a magnetic impurity. We observe thermal decomposition of MnF4 to MnF2 and not MnF3.  相似文献   

17.
Surprisingly little is known about fluorinated tin(II) alkoxides. Here the synthesis and characterization of Sn(ORF)2 [ORF = OC(CF3)3] and the crystal structures of its adducts with phenanthroline and dppe are reported. In addition, its ate complex [Sn(ORF)3] was synthesized with lithium or sodium as cation and as acetonitrile adduct. The thermolytic behavior of both, the alkoxide and the lithium stannate(II), was investigated together with first electrochemical measurements of Li[Sn(ORF)3].  相似文献   

18.
Hydrothermally synthesized dipotassium gallium {hydrogen bis[hydrogenphosphate(V)]} difluoride, K2Ga[H(HPO4)2]F2, is isotypic with K2Fe[H(HPO4)2]F2. The main features of the structure are ([Ga{H(HPO4)2}F2]2−)n columns consisting of centrosymmetric Ga(F2O4) octahedra [average Ga—O = 1.966 (3) Å and Ga—F = 1.9076 (6) Å] stacked above two HPO4 tetrahedra [average P—O = 1.54 (2) Å] sharing two O‐atom vertices. The charge‐balancing seven‐coordinate K+ cations [average K—O,F = 2.76 (2) Å] lie in the intercolumn space, stabilizing a three‐dimensional structure. Strong [O...O = 2.4184 (11) Å] and medium [O...F = 2.6151 (10) Å] hydrogen bonds further reinforce the connections between adjacent columns.  相似文献   

19.

[cis-g-Cr(trien) C2O4)] Cl·2H2O (I) (CrC8H22N4O6Cl) crystallizes at 22°C, from deionized water solution as a racemate in space group Pn (No. 7). Lattice constants are: a = 7.193(2), b = 9.1545(12), c = 11.469(2) Å; g = 100.994(13)°; V = 741.3(3) Å3 and Dcalc = 1.603 gcm-3 (MW = 357.75, Z = 2). A total of 2251 data were collected, using MoK f radiation ( u = 0.71703 Å), over the range 4 h 2 è h 60°; of these, 1441 (independent and with I S 2 σ (I)) were used in the structural analysis. Data were corrected for absorption ( w = 9.81 cm-1) and the transmission coefficients ranged from 0.8676 to 0.9942. The final R (F) and Rw(F) residuals were 0.0338 and 0.0764, respectively. The cations of (II) exist in the lattice as enantiomeric pairs. [Cr2( w -OH)2( w -tren)2]Br4 ·2H2O (II) (Cr2C12H42N8O4Br4) crystallizes in the monoclinic space group P21/n (No. 14) with a = 10.835(2) Å, b= 7.859(3) Å, c = 16.397(2) Å, g = 105.45(2)°, V = 1345.7(5) Å33 and Dcalc = 1.940 g cm-1 (MW = 786.18, Z = 4). A total of 2467 data were collected, using MoK f radiation ( u = 0.71703 Å), over the range 4 h 2 è h 50°; of these, 1450 (independent and with I S 2 σ ( I )) were used in the structural analysis. Data were corrected for absorption ( w =67.79 cm-1) and the transmission coefficients ranged from 0.5589 to 0.9949. The final R(F) and Rw(F) residuals were 0.0481 and 0.1408, respectively for 2385 observed reflections with ( I S 2 σ ( I )). In the complex cation, the two Cr(III) centers are in a distorted octahedral environment and are bridged by two hydroxide groups and two ethylamine arms, one from each tren ligand, which spans over the binuclear core. Within the bridging moiety, the Cr···Cr separation is 3.005(2) Å, the ° Cr-OH-Cr = 101.3(2)° and ° O-Cr-O = 78.7(2)°, while the average Cr-N bond distance trans to the hydroxo groups (2.085(6) Å) is shorter than the corresponding cis Cr-N distance (2.104(5) Å).  相似文献   

20.
K2W6Br14 ( I ), Rb2W6Br14 ( II ), and Cs2W6Br14 ( III ) were formed by reactions of W6Br12 with the corresponding alkali metal bromides in evacuated silica tubes with a temperature gradient of 925 K/915 K. ( I ) crystallizes in the cubic space group Pn3 (no. 201), a = 13.808 Å, Z = 4, cP88. ( II ) crystallizes in the monoclinic space group C2/c (no. 15), a = 20.301 Å, b = 15.396 Å, c = 9.720 Å, β = 115.69°, Z = 4, mC88. ( III ) crystallizes in the trigonal space group P31c (no. 163), a = 10.180 Å, c = 15.125 Å, Z = 2, hP44. The crystal structures are composed of the isolated [(W6Br)Br]2– cluster anions and the alkali metal cations (d(W–W) = 2.635(2) Å, d(W–Bri) = 2.624(4) Å, d(W–Bra) = 2.595(4) Å). The shape of the anions is influenced by the crystal field symmetry, but the mean bond lengths are not changed by the cation size. The packing of the cluster anions corresponds to ccp pattern in ( I ) and hcp pattern in ( II ) and ( III ), respectively. The alkali metal cations in the octahedral holes are coordinated only by the Bra ligands while those in the tetrahedral and trigonal-bipyramidal cavities are surrounded by Bra and Bri ligands. The details will be discussed and compared with other structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号