首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The known median-based denoising methods tends to work well for restoring the images corrupted by random-valued impulse noise with low noise level, but it fails in denoising highly corrupted images. In this paper, a new noise reduction method based on directional weighted median based fuzzy impulse noise detection and reduction method (DWMFIDRM) has been proposed, which has been specially developed for denoising all categories of impulse noise. The contribution of this paper is threefold. The main contribution of the novel impulse noise reduction technique lies in the unification of three different methods; the impulse noise detection phase utilizing the concept of fuzzy gradient values, edge-preserving noise reduction phase based on the directional weighted median of the neighboring pixels and a final filtering step in order to deal with noisy pixels of non-zero degree. Such a unique combination has improved the efficiency of this method for high density noise removal. The experimental results of our proposed method have a significant improvement when compared to other existing filters for high density noise removal. This paper utilizes the concept of fuzzy gradient values. The noise reduction phase that preserves edge sharpness is based on the directional weighted median of neighboring pixels. Final filtering phase is performed only when there is non-zero degree of noise pixels. This phase makes our method more efficient in high noise density. Experimental results show that DWMFIDRM provides a significant improvement on other existing filters.  相似文献   

2.
Recently, two-phase schemes for removing salt-and-pepper and random-valued impulse noise are proposed in [6, 7]. The first phase uses decision-based median filters to locate those pixels which are likely to be corrupted by noise (noise candidates). In the second phase, these noise candidates are restored using a detail-preserving regularization method which allows edges and noise-free pixels to be preserved. As shown in [18], this phase is equivalent to solving a one-dimensional nonlinear equation for each noise candidate.One can solve these equations by using Newton‘s method. However, because of the edgepreserving term, the domain of convergence of Newton‘s method will be very narrow. In this paper, we determine the initial guesses for these equations such that Newton‘s method will always converge.  相似文献   

3.
We consider the inpainting problem for noisy images. It is very challenge to suppress noise when image inpainting is processed. An image patches based nonlocal variational method is proposed to simultaneously inpainting and denoising in this paper. Our approach is developed on an assumption that the small image patches should be obeyed a distribution which can be described by a high dimension Gaussian Mixture Model. By a maximum a posteriori (MAP) estimation, we formulate a new regularization term according to the log-likelihood function of the mixture model. To optimize this regularization term efficiently, we adopt the idea of the Expectation Maximization (EM) algorithm. In which, the expectation step can give an adaptive weighting function which can be regarded as a nonlocal connections among pixels. Using this fact, we built a framework for non-local image inpainting under noise. Moreover, we mathematically prove the existence of minimizer for the proposed inpainting model. By using a splitting algorithm, the proposed model are able to realize image inpainting and denoising simultaneously. Numerical results show that the proposed method can produce impressive reconstructed results when the inpainting region is rather large.  相似文献   

4.
基于稀疏重构的图像修复依赖于图像全局自相似性信息的利用和稀疏分解字典的选择,为此提出了基于分类学习字典全局稀疏表示模型的图像修复思路.该算法首先将图像未丢失信息聚类为具有相似几何结构的多个子区域,并分别对各个子区域用K-SVD字典学习方法得到与各子区域结构特征相适应的学习字典.然后根据图像自相似性特点构建能够描述图像块空间组织结构关系的全局稀疏最大期望值表示模型,迭代地使用该模型交替更新图像块的组织结构关系和损坏图像的估计直到修复结果趋于稳定.实验结果表明,方法对于图像的纹理细节、结构信息都能起到好的修复作用.  相似文献   

5.
Segmentation of spotted microarray images is important in generating gene expression data. It aims to distinguish foreground pixels from background pixels for a given spot of a microarray image. Edge detection in the image processing literature is a closely related research area, because spot boundary curves separating foregrounds from backgrounds in a microarray image can be treated as edges. However, for generating gene expression data, segmentation methods for handling spotted microarray images are required to classify each pixel as either a foreground or a background pixel; most conventional edge detectors in the image processing literature do not have this classification property, because their detected edge pixels are often scattered in the whole design space and consequently the foreground or background pixels are not defined. In this article, we propose a general postsmoothing procedure for estimating spot boundary curves from the detected edge pixels of conventional edge detectors, such that these conventional edge detectors together with the proposed postsmoothing procedure can be used for segmentation of spotted microarray images. Numerical studies show that this proposal works well in applications.

Datasets and computer code are available in the online supplements.  相似文献   

6.
In most applications, denoising image is fundamental to subsequent image processing operations. This paper proposes a spectral conjugate gradient (CG) method for impulse noise removal, which is based on a two-phase scheme. The noise candidates are first identified by the adaptive (center-weighted) median filter; then these noise candidates are restored by minimizing an edge-preserving regularization functional, which is accomplished by the proposed spectral CG method. A favorite property of the proposed method is that the search direction generated at each iteration is descent. Under strong Wolfe line search conditions, its global convergence result could be established. Numerical experiments are given to illustrate the efficiency of the spectral conjugate gradient method for impulse noise removal.  相似文献   

7.
This paper describes a novel inpainting algorithm that is capable of filling in holes in overlapping texture and cartoon image layers. This algorithm is a direct extension of a recently developed sparse-representation-based image decomposition method called MCA (morphological component analysis), designed for the separation of linearly combined texture and cartoon layers in a given image (see [J.-L. Starck, M. Elad, D.L. Donoho, Image decomposition via the combination of sparse representations and a variational approach, IEEE Trans. Image Process. (2004), in press] and [J.-L. Starck, M. Elad, D.L. Donoho, Redundant multiscale transforms and their application for morphological component analysis, Adv. Imag. Electron Phys. (2004) 132]). In this extension, missing pixels fit naturally into the separation framework, producing separate layers as a by-product of the inpainting process. As opposed to the inpainting system proposed by Bertalmio et al., where image decomposition and filling-in stages were separated as two blocks in an overall system, the new approach considers separation, hole-filling, and denoising as one unified task. We demonstrate the performance of the new approach via several examples.  相似文献   

8.
The paper is devoted to an approach for image inpainting developed on the basis of neurogeometry of vision and sub-Riemannian geometry. Inpainting is realized by completing damaged isophotes (level lines of brightness) by optimal curves for the left-invariant sub-Riemannian problem on the group of rototranslations (motions) of a plane SE(2). The approach is considered as anthropomorphic inpainting since these curves satisfy the variational principle discovered by neurogeometry of vision. A parallel algorithm and software to restore monochrome binary or halftone images represented as series of isophotes were developed. The approach and the algorithm for computation of completing arcs are presented in detail.  相似文献   

9.
Inpainting is an image interpolation problem with broad applications in image and vision analysis. Described in the current expository paper are our recent efforts in developing universal inpainting models based on the Bayesian and variational principles. Discussed in detail are several variational inpainting models built upon geometric image models, the associated Euler‐Lagrange PDEs and their geometric and dynamic interpretations, as well as effective computational approaches. Novel efforts are then made to further extend this systematic variational framework to the inpainting of oscillatory textures, interpolation of missing wavelet coefficients as in the wireless transmission of JPEG2000 images, as well as light‐adapted inpainting schemes motivated by Weber's law in visual perception. All these efforts lead to the conclusion that unlike many familiar image processors such as denoising, segmentation, and compression, the performance of a variational/Bayesian inpainting scheme much more crucially depends on whether the image prior model well resolves the spatial coupling (or geometric correlation) of image features. As a highlight, we show that the Besov image models appear to be less interesting for image inpainting in the wavelet domain, highly contrary to their significant roles in thresholding‐based denoising and compression. Thus geometry is the single most important keyword throughout this paper. © 2005 Wiley Periodicals, Inc.  相似文献   

10.
In this paper, a fast algorithm for Euler's elastica functional is proposed, in which the Euler's elastica functional is reformulated as a constrained minimization problem. Combining the augmented Lagrangian method and operator splitting techniques, the resulting saddle-point problem is solved by a serial of subproblems. To tackle the nonlinear constraints arising in the model, a novel fixed-point-based approach is proposed so that all the subproblems either is a linear problem or has a closed-form solution. We show the good performance of our approach in terms of speed and reliability using numerous numerical examples on synthetic, real-world and medical images for image denoising, image inpainting and image zooming problems.  相似文献   

11.
Blind deconvolution problems arise in many image restoration applications. Most available blind deconvolution methods are iterative. Recently, Justen and Ramlau proposed a novel non-iterative blind deconvolution method. The method was derived under the assumption of periodic boundary conditions. These boundary conditions may introduce oscillatory artifacts into the computed restoration. We describe extensions of the Justen–Ramlau method that allow the use of Neumann and antireflective boundary conditions.  相似文献   

12.
We introduce and study a formulation of the inpainting problem for two-dimensional images that are locally damaged. This formulation is based on the regularization of the solution of a second-order variational problem with Dirichlet boundary condition. A variational approximation algorithm is proposed. Bibliography: 45 titles.  相似文献   

13.
The problem of recovering a low-rank matrix from a set of observations corrupted with gross sparse error is known as the robust principal component analysis (RPCA) and has many applications in computer vision, image processing and web data ranking. It has been shown that under certain conditions, the solution to the NP-hard RPCA problem can be obtained by solving a convex optimization problem, namely the robust principal component pursuit (RPCP). Moreover, if the observed data matrix has also been corrupted by a dense noise matrix in addition to gross sparse error, then the stable principal component pursuit (SPCP) problem is solved to recover the low-rank matrix. In this paper, we develop efficient algorithms with provable iteration complexity bounds for solving RPCP and SPCP. Numerical results on problems with millions of variables and constraints such as foreground extraction from surveillance video, shadow and specularity removal from face images and video denoising from heavily corrupted data show that our algorithms are competitive to current state-of-the-art solvers for RPCP and SPCP in terms of accuracy and speed.  相似文献   

14.
In many problems of linear image restoration, the point spread function is assumed to be known even if this information is usually not available. In practice, both the blur matrix and the restored image should be performed from the observed noisy and blurred image. In this case, one talks about the blind image restoration. In this paper, we propose a method for blind image restoration by using convex constrained optimization techniques for solving large-scale ill-conditioned generalized Sylvester equations. The blur matrix is approximated by a Kronecker product of two matrices having Toeplitz and Hankel forms. The Kronecker product approximation is obtained from an estimation of the point spread function. Numerical examples are given to show the efficiency of our proposed method.  相似文献   

15.
The method of data-driven tight frame has been shown very useful in image restoration problems.We consider in this paper extending this important technique,by incorporating L1 data fidelity into the original data-driven model,for removing impulsive noise which is a very common and basic type of noise in image data.The model contains three variables and can be solved through an efficient iterative alternating minimization algorithm in patch implementation,where the tight frame is dynamically updated.It constructs a tight frame system from the input corrupted image adaptively,and then removes impulsive noise by the derived system.We also show that the sequence generated by our algorithm converges globally to a stationary point of the optimization model.Numerical experiments and comparisons demonstrate that our approach performs well for various kinds of images.This benefits from its data-driven nature and the learned tight frames from input images capture richer image structures adaptively.  相似文献   

16.
In this paper we are concerned with the analysis of convergent sequential and parallel overlapping domain decomposition methods for the minimization of functionals formed by a discrepancy term with respect to the data and a total variation constraint. To our knowledge, this is the first successful attempt of addressing such a strategy for the nonlinear, nonadditive, and nonsmooth problem of total variation minimization. We provide several numerical experiments, showing the successful application of the algorithm for the restoration of 1D signals and 2D images in interpolation/inpainting problems, respectively, and in a compressed sensing problem, for recovering piecewise constant medical-type images from partial Fourier ensembles.  相似文献   

17.
Wavelet frame systems are known to be effective in capturing singularities from noisy and degraded images. In this paper, we introduce a new edge driven wavelet frame model for image restoration by approximating images as piecewise smooth functions. With an implicit representation of image singularities sets, the proposed model inflicts different strength of regularization on smooth and singular image regions and edges. The proposed edge driven model is robust to both image approximation and singularity estimation. The implicit formulation also enables an asymptotic analysis of the proposed models and a rigorous connection between the discrete model and a general continuous variational model. Finally, numerical results on image inpainting and deblurring show that the proposed model is compared favorably against several popular image restoration models.  相似文献   

18.
The aim of this article is to review and extend the applications of the topological gradient to major image processing problems. We briefly review the topological gradient, and then present its application to the crack localization problem, which can be solved using the Dirichlet to Neumann approach. A very natural application of this technique in image processing is the inpainting problem, which can be solved by identifying the optimal location of the missing edges. Edge detection is of extreme importance, as edges convey essential information in a picture. A second natural application is then the image reconstruction. A class of image reconstruction problems is considered that includes restoration, demosaicing, segmentation and super-resolution. These problems are studied using a unified theoretical framework which is based on the topological gradient method. This tool is able to find the localization and orientation of the edges for blurred, low sampled, partially masked, noisy images. We review existing algorithms and propose new ones. The performance of our approach is compared with conventional image reconstruction processes.  相似文献   

19.
In this paper, we study robust quaternion matrix completion and provide a rigorous analysis for provable estimation of quaternion matrix from a random subset of their corrupted entries. In order to generalize the results from real matrix completion to quaternion matrix completion, we derive some new formulas to handle noncommutativity of quaternions. We solve a convex optimization problem, which minimizes a nuclear norm of quaternion matrix that is a convex surrogate for the quaternion matrix rank, and the ?1‐norm of sparse quaternion matrix entries. We show that, under incoherence conditions, a quaternion matrix can be recovered exactly with overwhelming probability, provided that its rank is sufficiently small and that the corrupted entries are sparsely located. The quaternion framework can be used to represent red, green, and blue channels of color images. The results of missing/noisy color image pixels as a robust quaternion matrix completion problem are given to show that the performance of the proposed approach is better than that of the testing methods, including image inpainting methods, the tensor‐based completion method, and the quaternion completion method using semidefinite programming.  相似文献   

20.
全变差正则化数据拟合问题产生于许多图像处理任务,如图像去噪、去模糊、图像修复、磁共振成像、压缩图像感知等.近年来,求解此类问题的快速高效算法发展很快.以最小二乘、最小一乘等为例简要回顾求解此类问题的主要算法,并讨论一个全变差正则化非凸数据拟合模型在脉冲噪声图像去模糊问题中的应用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号