首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
In this study, the in vivo effect of the crude extract and n-butanol and aqueous residual fractions of Baccharis articulata (Lam.) Pers. on serum glucose levels, insulin secretion and liver and muscle glycogen content, as well as in vitro action on serum intestinal disaccharidase activity and albumin glycation were investigated. Oral administration of the extract and fractions reduced glycemia in hyperglycemic rats. Additionally, the n-butanol fraction, which has high flavonoids content, stimulated insulin secretion, exhibiting an insulinogenic index similar to that of glipizide. Also, the n-butanol fraction treatment significantly increased glycogen content in both liver and muscle tissue. In vitro incubation with the crude extract and n-butanol and aqueous residual fractions inhibited maltase activity and the formation of advanced glycation end-products (AGEs). Thus, the results demonstrated that B. articulata exhibits a significant antihyperglycemic and insulin-secretagogue role. These effects on the regulation of glucose homeostasis observed for B. articulata indicate potential anti-diabetic properties.  相似文献   

2.
The effects of extracts of muscles of mackerel (Scomber japonicus; M-ext) on hepatic glycogenolysis were investigated by a rat liver perfusion method. M-ext inhibited glucagon- and cyclic adenosine monophosphate (AMP)-induced glycogenolysis but was ineffective on phenylephrine-induced glycogenolysis. The contents of hepatic glycogen and cyclic AMP, and phosphorylase and glycogen synthase activities in liver were measured after perfusion with glucagon. M-ext inhibited the increase of cyclic AMP and activation of phosphorylase. It is considered that M-ext inhibits hepatic glycogenolysis caused by glucagon through a cyclic AMP-dependent mechanism.  相似文献   

3.
This study was designed to investigate the effects of polysaccharide-rich red algae (Gelidium amansii) hot-water extracts (GHE) on lipid and glucose metabolism in rats with streptozotocin (STZ)/nicotinamide (NA)-induced diabetes. Rats were divided into three groups: NC—normal control group), DM—diabetic group, and DG—diabetic group supplemented with GHE (5%). The experimental diet and drinking water were available ad libitum for 10 weeks. After the 10-week feeding duration, the body weight, liver weight, total adipose tissue weight, and hepatic TBARS and cholesterol levels were significantly increased, and hepatic glycogen content and adipose lipolysis rate were significantly decreased in the DM group, which could be effectively reversed by supplementation of GHE. However, GHE supplementation could not improve the glucose intolerance in DM rats. It was interesting to note that GHE supplementation could decrease the liver glucose-6-phosphotase activity, which was increased in DM rats. Taken together, these results suggested that GHE feeding may ameliorate abnormal hepatic lipid metabolism, but not glucose intolerance, in diabetic rats induced by STZ/NA.  相似文献   

4.
The regulation of the hepatic glucose output through glycogenolysis is an important target for type 2 diabetes therapy. Glycogenolysis is catalyzed in liver, muscle and brain by tissue specific isoforms of glycogen phosphorylase (GP). Because of its central role in glycogen metabolism, GP has been exploited as a model for structure-assisted design of potent inhibitors, which may be relevant to the control of blood glucose concentrations in type 2 diabetes. Several regulatory binding sites have been identified in GP, such as the catalytic, the allosteric, and the inhibitor binding sites. Protein crystallography has contributed significant structural information on the specificity and interactions that distinguish the binding sites, and also revealed a new unexpected binding site (new allosteric site). In this review, the kinetic, crystallographic binding, and physiological studies of a number of compounds, inhibitors of GP, are described, and the essential inhibitory and binding properties of specific compounds are analyzed in an effort to provide rationalizations for the affinities of these compounds and to exploit the molecular interactions that might give rise to a better inhibitor. These studies have given new insights into fundamental structural aspects of the enzyme enhancing our understanding of how the enzyme recognizes and specifically binds ligands, that could be of potential therapeutic value in the treatment of type 2 diabetes.  相似文献   

5.
The compound 2-deoxy-2-fluoro-α-d-glucopyranosyl fluoride (F2Glc), which is a nonmetabolized superior glucose analogue, is a potent inhibitor of glycogen phosphorylase and pharmacological properties are reported. Glycogen phosphorylase (GP) and glycogen synthase (GS) are responsible of the degradation and synthesis, respectively, of glycogen which is a polymer of glucose units that provides a readily available source of energy in mammals. GP and GS are two key enzymes that modulate cellular glucose and glycogen levels; therefore, these proteins are suggested as potential targets for the treatment of diseases related to glycogen metabolism disorders. We studied by Western Blot technique that F2Glc decreased GP activity, and we also showed that F2Glc did not affect GS activity and its translocation from a uniform cytosolic distribution to the hepatocyte periphery, which is crucial for glycogen synthesis, using immunoblotting and immunofluorescence labeling techniques. F2Glc specifically inhibits glycogenolysis pathway and permits a greater deposition of glycogen. These observations open up the possibility of further develop drugs that act specifically on GP. The ability to selectively inhibit GP, which is a key enzyme for the release of glucose from the hepatic glycogen reserve, may represent a new approach for the treatment of hyperglycemia in type 2 diabetes.  相似文献   

6.
Glycogen phosphorylase (GP) is a key enzyme in the glycogenolysis pathway and a potential therapeutic target in the management of type 2 diabetes. It catalyzes a reversible reaction: the release of the terminal glucosyl residue from glycogen as glucose 1-phosphate; or the transfer of glucose from glucose 1-phosphate to glycogen. A colorimetric method to follow in vitro the activity of GP with usefulness in structure-activity relationship studies and high-throughput screening capability is herein described. The obtained results allowed the choice of the optimal concentration of enzyme of 0.38 U/mL, 0.25 mM glucose 1-phosphate, 0.25 mg/mL glycogen, and temperature of 37 °C. Three known GP inhibitors, CP-91149, a synthetic inhibitor, caffeine, an alkaloid, and ellagic acid, a polyphenol, were used to validate the method, CP-91149 being the most active inhibitor. The effect of glucose on the IC50 value of CP-91149 was also investigated, which decreased when the concentration of glucose increased. The assay parameters for a high-throughput screening method for discovery of new potential GP inhibitors were optimized and standardized, which is desirable for the reproducibility and comparison of results in the literature. The optimized method can be applied to the study of a panel of synthetic and/or natural compounds, such as polyphenols.  相似文献   

7.
Background: Glycogen phosphorylases catalyze the breakdown of glycogen to glucose-1-phosphate for glycolysis. Maintaining control of blood glucose levels is critical in minimizing the debilitating effects of diabetes, making liver glycogen phosphorylase a potential therapeutic target.Results: The binding site in human liver glycogen phosphorylase (HLGP) for a class of promising antidiabetic agents was identified crystallographically. The site is novel and functions allosterically by stabilizing the inactive conformation of HLGP. The initial view of the complex revealed key structural information and inspired the design of a new class of inhibitors which bind with nanomolar affinity and whose crystal structure is also described. Conclusions: We have identified the binding site of a new class of allosteric HLGP inhibitors. The crystal structure revealed the details of inhibitor binding, led to the design of a new class of compounds, and should accelerate efforts to develop therapeutically relevant molecules for the treatment of diabetes.  相似文献   

8.
9.
Abstract— Photofrin II (PF-II) is the commercial name of the active photosensitizer which is used in photodynamic therapy of cancer. The effect of the composition of lipid membranes on the binding of PF-II was studied and compared to hematoporphyrin derivative (Hpd), which is a complex mixture of porphyrins and from which PF-II is separated. We find that increasing the content of cholesterol in the bilayer decreases the partitioning of PF-II into the bilayer, similar to what we have found earlier with Hpd. However, inserting DMPC or DPPC into the membrane, which was shown to decrease the binding of Hpd, causes the opposite trend with PF-H. A membrane fluidizer such as benzyl alcohol also has different effects on the membrane binding of Hpd and PF-II. The rate of binding of PF-II to a lipid membrane is about 10 times lower than that of Hpd. These results as well as I- quenching of the fluorescence of the two porphyrins indicate that PF-II is immersed less homogeneously and deeper in the bilayer than Hpd. The unique additive-dependent binding of PF-II to lipid membranes calls for care in using Hpd as a model photosensitizer.  相似文献   

10.
The objective of this study was to evaluate the anti-diabetic potential of three mangrove plants, Rhizophora mucronata, Rhizophora apiculata and Rhizophora annamalayana, and to detect the presence of their insulin-like protein. The in?vivo anti-diabetic experiment was done on male albino Wister rats. Oral administration of 60?mg?kg(-1) leaf powder extract of the three different mangrove plants for 30 days modulated the parameters such as blood glucose, plasma insulin, body weight, total haemoglobin, glycosylated haemoglobin, liver glycogen, plasma and tissue lipids, cholesterol, triglycerides, free fatty acids and phospholipids to normal levels in the alloxan-induced diabetic rats. The anti-diabetic activity of R.?apiculata was more pronounced than that of the other mangrove extracts, but it was on a par with the commercial drug glibenclamide. The presence of an insulin-like protein in the mangrove extracts was detected by SDS-PAGE analysis and confirmed through ELISA. Hence, the anti-diabetic activity and the presence of an insulin-like protein in Rhizophora species were proved scientifically.  相似文献   

11.
The objective of present investigation was to study the effect of gut microbiota alteration by oral administration of targeted delivery of pH sensitive cefdinir microspheres to high-fructose-fed (HFD) rats. Rats were fed with a high-fructose diet with or without cefdinir microsphere administration for 30 days. The fecal microbiota community, oral glucose tolerance, the markers of liver injury, plasma and hepatic lipids profile, and histological evaluation were investigated. The levels of blood glucose, liver injury markers, lipid profile in plasma and liver, and fat tissue were significantly increased in high-fructose-fed rats. However, after pH-sensitive cefdinir microsphere administration, the elevation of these parameters was significantly suppressed. Cef EL significantly lowered the increased AST (p?<?0.05) and ALT (p?<?0.001) levels in HFD group. There is a significant lower (p?<?0.01) AUCglucose level in Cef EL group than HFD group The histological changes in the liver and the small and large intestines were more profound in HFD group as compared to cefdinir-treated HFD and control groups. Feeding of cefdinir microsphere sustained lactobacilli and bifidobacteria and significantly decreased (p?<?0.05) the number of Enterobacteriaceae induced by HFD. Experimental evidences demonstrated that the effectiveness of pH-specific cefdinir microsphere on reducing insulin resistance and development of metabolic changes in high-fructose-fed rats and suggested that it may be a promising therapeutic agent in treating type 2 diabetes. Intestinal-targeted antibiotic delivery needs to be further explored for its therapeutic applications.  相似文献   

12.
In this study, catechin (CTN) isolated from Elaeagnus umbellata was evaluated for in vitro antioxidant potential and inhibition of carbohydrate digestive enzymes (α-amylase and α-glucosidase). The compound was also tested for its in vivo antidiabetic potential using Sprague-Dawley rats as experimental animals. The effects of various doses of catechin in STZ (Streptozotocin) induced diabetic rats on fasting blood glucose level, body weight, lipid parameters, hepatic enzymes, and renal functions were evaluated using the reported protocols. The CTN exhibited the highest percent antioxidant for free radical scavenging activity against DPPH and ABTS free radicals, and inhibited the activity of carbohydrate digestive enzymes (with percent inhibition values: 79 ± 1.5% α-amylase and 80 ± 1.1% α-glucosidase). Administration CTN and standard glibenclamide significantly decreased the fasting blood glucose level and increased the body weight in STZ-induced diabetic rats. CTN significantly decreased the different lipid parameters, hepatic, and renal function enzyme levels along with Hb1c level in diabetic rats, while significantly increasing the high-density lipoprotein (HDL) level with values comparable to the standard glibenclamide. Further, the altered levels of glutathione and lipid peroxides of liver and kidney tissues were restored (by CTN) to levels similar to the control group. CTN significantly increased the antioxidant enzyme activities, total content of reduced glutathione, and reduced the malondialdehyde (MDA) level in rat liver and kidney tissues homogenates, and also corrected the histopathological abnormalities, suggesting its antioxidant potential.  相似文献   

13.
The ethanol-insoluble residue of Schisandra generated during lignans industrial production is usually treated as solid waste. However, there is active polysaccharide which could be used in it. In this work, the water-soluble polysaccharides from the ethanol-insoluble residue of Schisandra(ESCP) were obtained and their anti-diabetic effect was evaluated. The results indicate that ESCP could significantly reduce the blood glucose level in alloxan-induced diabetic mice. Moreover, the ESCP could significantly improve the lipid metabolism and increase the content of liver glycogen in alloxan-induced diabetic mice. The results indicate that ESCP could be developed into a potential natural hypoglycemic agent.  相似文献   

14.
急性镉中毒大鼠致死时重要器官镉的分布   总被引:4,自引:0,他引:4  
分别通过静脉和呼吸道急性镉染毒,探讨了急性镉中毒大鼠致死时,血液,心、肝、肾、脑、肺的镉分布。80只Wistar大鼠分为对照组和染毒组,氯化镉进行急性染毒,在心肌收缩功能降低为染毒前的50%及心跳停止时,取器官标本,用原子吸收分光光度计测定镉含量。实验结果提示,急性镉中毒时,血液、心脏的镉含量早期升高缓慢,后期升高较快,肝脏镉含量呈线性快速升高;而肾脏镉含量经呼吸道染毒时与肝脏类似,经静脉染毒时,  相似文献   

15.
Yin P  Zhao S  Chen S  Liu J  Shi L  Wang X  Liu Y  Ma C 《Molecules (Basel, Switzerland)》2011,16(11):9764-9774
Substantial evidence suggests that phenolic extracts of Castanea mollissima spiny burs (CMPE) increase pancreatic cell viability after STZ (streptozotocin) treatment as a result of their antioxidant properties. In the present study, the hypoglycemic and hypolipidemic activities of CMPE were studied in normal and STZ-induced diabetic rats CMPE were orally administrated at doses of 150 and 300 mg/kg twice a day for 12 consecutive days. Serum glucose, triglyceride, total cholesterol, HDL- and LDL-cholesterol levels, malondialdehyde (MDA) level and SOD activity in liver, kidney, spleen and heart tissues were measured spectrophotometrically. In normal rats, no significant changes were observed in serum glucose, lipid profiles and tissue MDA and GSH levels after orally administration of CMPE. In diabetic rats, oral administration of CMPE at a dose of 300 mg/kg caused significant decreases in serum glucose, triglyceride, total cholesterol, LDL-cholesterol levels, as well as MDA and GSH levels in spleen and liver tissues. However, the 300 mg/kg dosage caused a significant body weight loss in both normal and diabetic rats. The observed effects indicated that CMPE could be further developed as a drug to prevent abnormal changes in blood glucose and lipid profile and to attenuate lipid peroxidation in liver and spleen tissues.  相似文献   

16.
The beta-adrenoceptor-cyclic adenosine monophosphate (AMP) dependent glycogenolytic cascade was examined in normal rat hepatocytes and rat ascites hepatoma AH130 cells. The cyclic AMP content in AH130 cells was half of that in normal hepatocytes, and the cyclic AMP levels in both kinds of cells were clearly increased by isoproterenol (IPN). Cyclic AMP-dependent protein kinase activity was higher in AH130 cells than in normal hepatocytes. Phosphorylase kinase activities in 10000 x g supernatant of normal hepatocytes and AH130 cells were also increased in the presence of cyclic AMP. Phosphorylase a activities in the supernatant of both kinds of cells gradually decreased during incubation with 40 mM glucose at 37 degrees C, and the enzyme activity of normal hepatocytes was completely restored by the addition of Mg2(+)-adenosine triphosphate (ATP), but in the case of the hepatoma cells the recovery was small. The decreased phosphorylase a activity in the hepatoma cells was increased by additional glycogen but did not exceed the level before the incubation. In the case of normal hepatocytes it was not affected by glycogen. This indicates that glycogen contained in the cells influences the activation of phosphorylase; the glycogen content in AH130 cells was far less than in normal hepatocytes. On the other hand, when intact cells were incubated with a high concentration of glucose, phosphorylase a activity in the homogenate of normal hepatocytes was decreased and could be restored by IPN and dibutyryl cyclic AMP, but the enzyme activity in the homogenate of AH130 cells was very low and hardly changed after the incubation and treatment with these agents.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Abstract— The binding of hematoporphyrin derivated (Hpd) to lipid vesicles and bacterial membranes was determined by fluorescence spectroscopy. The fluorescence measurements of Hpd in aqueous solutions showed two bands at 613 and 677 nm. In lipid environments of lecithin vesicles the fluorescence spectrum was shifted to 631 and 692 nm, respectively. Hpd was rapidly bound to the cell membrane of Staphylococcus aureus while much less binding occurred in the presence of Escherichia coli. At the same time, spheroplasts of both bacteria were shown to bind Hpd to a similar extent. These results are well correlated with the photoinactivation of the gram positive bacteria with Hpd while the gram negative cells were shown to be resistant. The pH dependence of both Hpd binding to S. aureus as well as the photodynamic inhibitory effect of the same bacteria are similar. It is concluded that the segregation of Hpd to the cell membrane is a prerequisite for its photodynamic effect.  相似文献   

18.
The prevalence of metabolic syndrome has increased in modern society and the condition is proving to be a common precursor of cardiovascular disease. The aim of the present study was to investigate whether astragaloside IV, a major active constituent of Astragalus membranaceus (Fisch) Bge., is able to prevent the development of hypertension and endothelial dysfunction in fructose-fed rats. Rats were fed with 10% fructose in their drinking water for 8 weeks. From the beginning of week 5, two groups of fructose-fed rats were treated with 0.5 or 2 mg/kg, i.p., astragaloside IV. Another group of fructose-fed rats, injected with the same volume of vehicle (dimethylsulfoxide, DMSO) from week 5, served as the control group. At the end of the treatment period, blood pressure, blood glucose, glucose tolerance, blood insulin and lipids were determined. In addition, in vitro experiments were conducted at the end of the eight week treatment period to evaluate endothelium-dependent aortic vasorelaxation, as well as myocardial and aortic tissue levels of nitrate and nitrite (NOx) and cGMP. Fructose-fed rats developed clustering signs of metabolic syndrome, such as increased bodyweight, mild hypertension, hyperinsulinaemia, hypertriglyceridaemia, impaired glucose tolerance and impaired endothelium-dependent vasorelaxation. Administration of astragaloside IV reduced blood pressure and triglyceride levels in fructose-fed rats and high dose of astragaloside IV also improved glucose tolerance and endothelium-dependent vasorelaxation. The astragaloside IV-induced improvement in vasorelaxation was associated with increased levels of aortic NOx and cGMP and was abrogated by blockade of nitric oxide synthase with NG-nitro-l-arginine methyl ester (l-NAME). On the basis of its favourable effects on lipid metabolism, endothelium-dependent vasorelaxation and the nitric oxide-cGMP-related pathway, astragaloside IV may be useful in ameliorating food-induced metabolic syndrome.  相似文献   

19.
Natural estrogens have demonstrated a wide variety of biological activities, which makes them a good candidate for the treatment of diabetes. In vitro, this study evidenced that isoflavones enhanced insulin secretion and inhibited α-amylase activity. In vivo, the findings indicated that soy isoflavones stimulated insulin secretion, increased the hepatic glycogen content and suppressed blood glucose level. The soy isoflavones were also protected hepatic-kidney functions showed by the significant increase in superoxide dismutase, catalase and glutathione peroxidase activities and the decrease in thiobarbituric acid reactive substances, total bilirubin, creatinine and transaminases content. Moreover, soy isoflavones induced a decrease in LDL-cholesterol and triglycerides and an increase in HDL-cholesterol in plasma and liver. Overall, the findings of the current study indicate that soy isoflavones exhibit attractive properties and can, therefore, be considered a promising candidate for future application as alternative therapeutic agents, particularly in the development of anti-diabetic and hypolipidaemic drugs.  相似文献   

20.
The fruit extracts of Citrus aurantium (bitter orange) are traditionally used as weight-loss products and as appetite supressants. An important fruit component is p-synephrine, which is structurally similar to the adrenergic agents. Weight-loss and adrenergic actions are always related to metabolic changes and this work was designed to investigate a possible action of the C. aurantium extract on liver metabolism. The isolated perfused rat liver was used to measure catabolic and anabolic pathways, including oxygen uptake and perfusion pressure. The C. aurantium extract and p-synephrine increased glycogenolysis, glycolysis, oxygen uptake and perfusion pressure. These changes were partly sensitive to α- and β-adrenergic antagonists. p-Synephrine (200 μM) produced an increase in glucose output that was only 15% smaller than the increment caused by the extract containing 196 μM p-synephrine. At low concentrations the C. aurantium extract tended to increase gluconeogenesis, but at high concentrations it was inhibitory, opposite to what happened with p-synephrine. The action of the C. aurantium extract on liver metabolism is similar to the well known actions of adrenergic agents and can be partly attributed to its content in p-synephrine. Many of these actions are catabolic and compatible with the weight-loss effects usually attributed to C. aurantium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号