首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vibronic optical emissions from CS(A1pi --> X1sigma+) and CS(a3pi --> X1sigma+) transitions have been identified from dissociative recombination (DR) of CS2(+) and HCS2(+) plasmas. All of the spectra were taken in flowing afterglow plasmas using an optical monochromator in the UV-visible wavelength region of 180-800 nm. For the CS(A --> X) and CS(a --> X) emissions, the relative vibrational distributions have been calculated for v' < 5 and v' < 3 in both types of plasmas for the CS(A) and CS(a) states, respectively. Both recombining plasmas show a population inversion from the v' = 0 to v' = 1 level of the CS(A) state, similar to other observations of the CS(A) state populations, which were generated using two other energetic processes. The possibility of spectroscopic cascading is addressed, such that transitions from upper level electronic states into the CS(A) and CS(a) states would affect the relative vibrational distribution, and there is no spectroscopic evidence supporting the cascading effect. Additionally, excited-state transitions from neutral sulfur (S(5S(2)0 --> 3P(2)) and S(5S(2)0 --> 3P(1))) and the products of ion-molecule reactions (CS(B1sigma+ --> A1pi), CS(+)(B2sigma+ --> A2pi(i)), and CS2(+) (A2pi(u) --> X2pi(g))) have been observed and are discussed.  相似文献   

2.
3.
The paper presents a theoretical study of the low-energy dynamics of radiative association processes in the He+ + H2 collision system. Formation of the triatomic HeH2(+) ion in its bound rotation-vibration states on the potential-energy surfaces of the ground and of the first excited electronic states is investigated. Close-coupling calculations are performed to determine detailed state-to-state characteristics (bound <-- free transition rates, radiative and dissociative widths of resonances) as well as temperature-average characteristics (rate constants, photon emission spectra) of the two-state (X <-- A) reaction He+(2S) + H2(X1sigma(g)+) --> HeH2(+)(X2A') + h nu and of the single-state (A <-- A) reaction He+(2S) + H2(X1sigma(g)+) --> HeH2(+)(A2A') + h nu. The potential-energy surfaces of the X- and A-electronic states of HeH2(+) and the dipole moment surfaces determined ab initio in an earlier work [Kraemer, Spirko, and Bludsky, Chem. Phys. 276, 225 (2002)] are used in the calculations. The rate constants k(T) as functions of temperature are calculated for the temperature interval 1 < or = T < or = 100 K. The maximum k(T) values are predicted as 3.3 x 10(-15) s(-1) cm3 for the X <-- A reaction and 2.3 x 10(-20) s(-1) cm3 for the A <-- A reaction at temperatures around 2 K. Rotationally predissociating states of the He+-H2 complex, correlating with the upsilon = 0, j = 2 state of free H2, are found to play a crucial role in the dynamics of the association reactions at low temperatures; their contribution to the k(T) function of the X <-- A reaction at T < 30 K is estimated as larger than 80%. The calculated partial rate constants and emission spectra show that in the X <-- A reaction the HeH2(+)(X) ion is formed in its highly excited vibrational states. This is in contrast with the vibrational state population of the ion when formed via the (X <-- X) reaction He(1S) + H2(+)(X2sigma(g)+) --> HeH2(+)(X2A') + h nu.  相似文献   

4.
As a continuing theoretical study on the alpha-effect in the S(N)2 reactions at saturated carbon centers, 28 gas-phase reactions have been examined computationally by using the high-level G2(+) method. The reactions include: Nu(-)+CH(3)X-->CH(3)Nu+X(-) (X=F and Cl; Nu(-)=HO(-), HS(-), CH(3)O(-), Cl(-), Br(-), HOO(-), HSO(-), FO(-), ClO(-), BrO(-), NH(2)O(-), and HC(==O)OO(-)). It was found that all alpha-nucleophiles examined exhibit downward deviations from the correlation line between the overall barriers and proton affinities for normal nucleophiles, indicating the existence of the alpha-effect in the gas phase. The transition states (TS) for the alpha-nucleophiles are characterized by less advanced C--X bond cleavages than the normal nucleophiles, leading to smaller deformation energies and overall barriers. The size of the alpha-effect is related to the electron density on the alpha-atom, and increases when the position of alpha-atom is changed from left to right and from bottom to top in the periodic table. The reaction with CH(3)F exhibits a larger alpha-effect than that with CH(3)Cl, which can be explained by a later TS and a more positively charged methyl group at the TS for CH(3)F, [NuCH(3)F](- not equal). Thus, a higher electron density on the alpha-atom and a more positive methyl moiety at the TS result in a larger alpha-effect.  相似文献   

5.
Ab initio calculations employing the configuration interaction method including Davidson's corrections for quadruple excitations have been carried out to unravel the dissociation mechanism of acetylene dication in various electronic states and to elucidate ultrafast acetylene-vinylidene isomerization recently observed experimentally. Both in the ground triplet and the lowest singlet electronic states of C2H2(2+) the proton migration barrier is shown to remain high, in the range of 50 kcal/mol. On the other hand, the barrier in the excited 2 3A" and 1 3A' states decreases to about 15 and 34 kcal/mol, respectively, indicating that the ultrafast proton migration is possible in these states, especially, in 2 3A", even at relatively low available vibrational energies. Rice-Ramsperger-Kassel-Marcus calculations of individual reaction-rate constants and product branching ratios indicate that if C2H(2)2+ dissociates from the ground triplet state, the major reaction products should be CCH+(3Sigma-)+H+ followed by CH+(3Pi)+CH+(1Sigma+) and with a minor contribution (approximately 1%) of C2H+(2A1)+C+(2P). In the lowest singlet state, C2H+(2A1)+C+(2P) are the major dissociation products at low available energies when the other channels are closed, whereas at Eint>5 eV, the CCH+(1A')+H+ products have the largest branching ratio, up to 70% and higher, that of CH+(1Sigma+)+CH+(1Sigma+) is in the range of 25%-27%, and the yield of C2H++C+ is only 2%-3%. The calculated product branching ratios at Eint approximately 17 eV are in qualitative agreement with the available experimental data. The appearance thresholds calculated for the CCH++H+, CH++CH+, and C2H++C+ products are 34.25, 35.12, and 34.55 eV. The results of calculations in the presence of strong electric field show that the field can make the vinylidene isomer unstable and the proton elimination spontaneous, but is unlikely to significantly reduce the barrier for the acetylene-vinylidene isomerization and to render the acetylene configuration unstable or metastable with respect to proton migration.  相似文献   

6.
The mechanisms of the reactions of W and W+ with COx (x=1, 2) were studied at the CCSD(T)/[SDD+6-311G(d)]//B3LYP/[SDD+6-31G(d)] level of theory. It was shown that the gas-phase reaction of W with CO2 proceeds with a negligible barrier via an insertion pathway, W(7S)+CO2(1A1)-->W(eta2-OCO)(6A')-->OW(eta1-CO)(1A)-->WO (3Sigma+)+CO(1Sigma). This oxidation process is calculated to be exothermic by 32.4 kcal/mol. Possible intermediates of this reaction are the W(eta2-OCO) and OWCO complexes, among which the latter is 37.4 kcal/mol more stable and lies 39.7 and 7.3 kcal/mol lower than the reactants, W(7S)+CO2(1A1), and the products, WO (3Sigma+)+CO(1Sigma), respectively. The barrier separating W(eta2-OCO) from OWCO is 8.0 kcal/mol (relative to the W(eta2-OCO) complex), which may be characterized as a W+delta-(CO2)-delta charge-transfer complex. Ionization of W does not change the character of the reaction of W with CO2: the reaction of W+ with CO2, like its neutral analog, proceeds via an insertion pathway and leads to oxidation of the W-center. The overall reaction W+(6D) + CO2(1A1)-->W(eta1-OCO)+(6A)-->OW(eta1-CO)+(4A)-->WO+(4Sigma+)+CO(1Sigma) is calculated to be exothermic by 25.4 kcal/mol. The cationic reaction proceeds with a somewhat large (9.9 kcal/mol) barrier and produces two intermediates, W(eta1-OCO)+(6A) and OW(eta1-CO)+(4A). Intermediate W(eta1-OCO)+(6A) is 20.0 kcal/mol less stable than OW(eta1-CO)+(4A), and separated from the latter by a 35.2 kcal/mol barrier. Complex W(eta1-OCO)+(6A) is characterized as an ion-molecular complex type of W+-(CO2). Gas-phase reactions of M=W/W+ with CO lead to the formation of a W-carbonyl complex M(eta1-CO) for both M=W and W+. The C-O insertion product, OMC, lies by 5.2 and 69.3 kcal/mol higher than the corresponding M(eta1-CO) isomer, for M=W and W+, respectively, and is separated from the latter by a large energy barrier.  相似文献   

7.
Complete active space self-consistent field (CASSCF) and multiconfiguration second-order perturbation theory (CASPT2) calculations with an atomic natural orbital basis were performed for the 1(2)A', 1(2)A', 2(2)A', 2(2)A', and 3(2)A' (X2E, A2A1, and B2E) states of the CH3F+ ion. The 1(2)A' state is predicted to be the ground state, and the C(s)-state energy levels are different from those of the CH3Cl+ ion. The 2(2)A' (A2A1) state is predicted to be repulsive, and the calculated adiabatic excitation energies for 2(2)A' and 3(2)A' are very close to the experimental value for the B state. The CASPT2//CASSCF potential energy curves (PECs) were calculated for F-loss dissociation from the five C(s) states and H-loss dissociation from the 1(2)A', 1(2)A', and 2(2)A' states. The electronic states of the CH3+ and CH2F+ ions as the dissociation products were carefully determined by checking the energies and geometries of the asymptote products, and appearance potentials for the two ions in different states are predicted. The F-loss PEC calculations for CH3F+ indicate that F-loss dissociation occurs from the 1(2)A', 1(2)A', and 2(2)A' states [all correlating with CH3+(X1A1')], which supports the experimental observations of direct dissociation from the X and A states, and that direct F-loss dissociation can occur from the two Jahn-Teller component states of B2E, 2(2)A' and 3(2)A' [correlating with CH3+(1(3)A') and CH3+(1(3)A'), respectively]. Some aspects of the 3(2)A' Cl-loss PEC of the CH3Cl+ ion are inferred on the basis of the calculation results for CH3F+. The H-loss PEC calculations for CH3F+ indicate that H-loss dissociation occurs from the 1(2)A', 1(2)A', and 2(2)A' states [correlating with CH2F+(1(3)A'), CH2F+(X1A1), and CH2F+(1(1)A'), respectively], which supports the observations of direct dissociation from the X and B states. As the 2(2)A' H-loss PEC of CH3Cl+, the 2(2)A' H-loss PEC of CH3F+ does not lead to H + CH2X+, but the PECs of the two ions represent different types of reactions.  相似文献   

8.
Exceptionally short N [bond] F bond distances of only 1.217 A (crystal) and 1.246 A (gas phase) have been reported for N(2)F(+), making it the shortest N [bond] F bond ever observed. To trace the origin of this structural phenomenon, we have analyzed the model systems N(2)X(+), NF(3)X(+), and NH(3)X(+) (X [double bond] F, H) using generalized gradient approximation density functional theory at BP86/TZ2P. In good agreement with experiment, the computations yield an extremely short N [bond] F bond for N(2)F(+): we find N [bond] F bond distances in N(2)F(+), NF(4)(+), and NH(3)F(+) of 1.245, 1.339, and 1.375 A, respectively. The N [bond] X bonding mechanisms are quantitatively analyzed in the framework of Kohn-Sham MO theory. At variance with the current hypothesis, reduced steric and other Pauli repulsion (of substituents or lone pairs at N with F) rather than the extent of s [bond] p hybridization of N (i.e., sp versus sp(3)) are responsible for the much shorter N [bond] F distance in N(2)F(+) compared to NF(4)(+). The results for our nitrogen compounds are furthermore discussed in the more general context of how bond lengths are determined by both bonding and repulsive orbital interactions.  相似文献   

9.
The reflected shock tube technique with multipass absorption spectrometric detection of OH radicals at 308 nm (corresponding to a total path length of approximately 4.9 m) has been used to study the dissociation of methanol between 1591 and 2865 K. Rate constants for two product channels [CH3OH + Kr --> CH3 + OH + Kr (1) and CH3OH + Kr --> 1CH2 + H2O + Kr (2)] were determined. During the course of the study, it was necessary to determine several other rate constants that contributed to the profile fits. These include OH + CH3OH --> products, OH + (CH3)2CO --> CH2COCH3 + H2O, and OH + CH3 --> 1,3CH2 + H2O. The derived expressions, in units of cm(3) molecule(-1) s(-1), are k(1) = 9.33 x 10(-9) exp(-30857 K/T) for 1591-2287 K, k(2) = 3.27 x 10(-10) exp(-25946 K/T) for 1734-2287 K, kOH+CH3OH = 2.96 x 10-16T1.4434 exp(-57 K/T) for 210-1710 K, k(OH+(CH3)(2)CO) = (7.3 +/- 0.7) x 10(-12) for 1178-1299 K and k(OH+CH3) = (1.3 +/- 0.2) x 10(-11) for 1000-1200 K. With these values along with other well-established rate constants, a mechanism was used to obtain profile fits that agreed with experiment to within <+/-10%. The values obtained for reactions 1 and 2 are compared with earlier determinations and also with new theoretical calculations that are presented in the preceding article in this issue. These new calculations are in good agreement with the present data for both (1) and (2) and also for OH + CH3 --> products.  相似文献   

10.
The electronic and geometric structures of gallium dinitride cation, GaN2+ and gallium tetranitride cation, GaN4+ were systematically studied by employing density functional theory (DFT-B3LYP) and perturbation theory (MP2, MP4) in conjunction with large basis sets, (aug-)cc-pVxZ, x = T, Q. A total of 7 structures for GaN2+ and 24 for GaN4+ were identified, corresponding to minima, transition states, and saddle points. We report geometries and dissociation energies for all the above structures as well as potential energy profiles, potential energy surfaces, and bonding mechanisms for some low-lying electronic states. The calculated dissociation energy (De) of the ground state of GaN2+, X1Sigma+, is 5.6 kcal/mol with respect to Ga+(1S) + N2(X1Sigmag+) and that of the excited state, ?3Pi, is 24.8 kcal/mol with respect to Ga+(3P) + N2(X1Sigmag+). The ground state and the first excited minimum of GaN4+ are of 1A1(C2v) and 3B1(C2v) symmetry with corresponding De of 11.0 and 43.7 kcal/mol with respect to Ga+(1S) + 2N2(X1Sigmag+) for X1A1 and Ga+(3P) + 2N2(X1Sigmag+) for 3B1.  相似文献   

11.
The emission spectrum of the D(2) molecule has been studied at high resolution in the vacuum ultraviolet region 78.5-102.7 nm. A detailed analysis of the two D (1)Pi(u)-->X (1)Sigma(g) (+) and D(') (1)Pi(u) (-)-->X (1)Sigma(g) (+) electronic band systems is reported. New and improved values of the level energies of the two upper states have been derived with the help of the program IDEN [V. I. Azarov, Phys. Scr. 44, 528 (1991); 48, 656 (1993)], originally developed for atomic spectral analysis. A detailed comparison is made between the observed energy levels and solutions of coupled equations using the newest ab initio potentials by Wolniewicz and co-workers [J. Chem. Phys. 103, 1792 (1995); 99, 1851 (1993); J. Mol. Spectros. 212, 208 (2002); 220, 45 (2003)] taking into account the nonadiabatic coupling terms for the D (1)Pi(u) state with the lowest electronic states B (1)Sigma(u) (+), C (1)Pi(u), and B(') (1)Sigma(u) (+). A satisfactory agreement has been found for most of the level energies belonging to the D and D(') states. The remaining differences between observation and theory are probably due to nonadiabatic couplings with other higher electronic states which were neglected in the calculations.  相似文献   

12.
Collision-induced dissociation of Cu+(acetone)(x), x = 1-4, with Xe is studied as a function of kinetic energy using guided ion beam mass spectrometry. In all cases, the primary and lowest energy dissociation channel observed is endothermic loss of one acetone molecule. The primary cross section thresholds are interpreted to yield 0 and 298 K bond energies after accounting for the effects of multiple ion-neutral collisions, internal energy of the complexes, and dissociation lifetimes. Density functional calculations at the B3LYP/6-31G* level of theory are used to determine the structures of these complexes and provide molecular constants necessary for the thermodynamic analysis of the experimental data. Theoretical bond dissociation energies are determined from single point calculations at the B3LYP/6-311+G(2d,2p) and MP2(full)/6-311+G(2d,2p) levels, using the B3LYP/6-31G* optimized geometries. The experimental bond energies determined here are in good agreement with previous experimental measurements made in a high-pressure mass spectrometer for the sum of the first and second bond energy (i.e., Cu+(acetone)2 --> Cu+ + 2 acetone) when these results are properly anchored. The agreement between theory and experiment is reasonable in all cases, but varies both with the size of the cluster and the level of theory employed. B3LYP does an excellent job for the x = 1 and 3 clusters, but is systematically low for the x = 2 and 4 clusters such that the overall trends in sequential binding energies are not parallel. In contrast, all MP2 values are somewhat low, but the overall trends parallel the measured values for all clusters. The trends in the measured Cu+(acetone), binding energies are explained in terms of 4s-3d sigma hybridization effects and ligand-ligand repulsion in the clusters.  相似文献   

13.
The intrinsic methylating abilities of the known biological methylating zwitterionic agents, dimethylsulfonioacetate (DMSA), (CH(3))(2)S?CH(2)CO(2)(-) (1) and glycine betaine (GB), (CH(3))(3)N?CH(2)CO(2)(-) (2), have been examined via a range of gas phase experiments involving collision-induced dissociation (CID) of their proton-bound homo- and heterodimers, including those containing the amino acid arginine. The relative yields of the products of methyl cation transfer are consistent in all cases and show that protonated DMSA is a more potent methylating agent than protonated GB. Since methylation can occur at more than one site in arginine, the [M+CH(3)](+) ion of arginine, formed from the heterocluster [DMSA+Arg+H](+), was subject to an additional stage of CID. The resultant CID spectrum is virtually identical to that of an authentic sample of protonated arginine-O-methyl ester but is significantly different to that of an authentic sample of protonated N(G)-methyl arginine. This suggests that methylation has occurred within a salt bridge complex of [DMSA+Arg+H](+), in which the arginine exists in the zwitterionic form. Finally, density functional theory calculations on the model salts, (CH(3)CO(2)(-))[(CH(3))(3)S(+)] and (CH(3)CO(2)(-))[(CH(3))(4)N(+)], show that methylation of CH(3)CO(2)(-) by (CH(3))(3)S(+) is both kinetically and thermodynamically preferred over methylation by (CH(3))(4)N(+).  相似文献   

14.
A guided-ion beam tandem mass spectrometer is used to study the reactions, W(+) + CH(4) (CD(4)) and [W,C,2H](+) + H(2) (D(2)), to probe the [W,C,4H](+) potential energy surface. The reaction W(+) + CH(4) produces [W,C,2H](+) in the only low-energy process. The analogous reaction in the CD(4) system exhibits a cross section with strong differences at the lowest energies caused by zero-point energy differences, demonstrating that this reaction is slightly exothermic for CH(4) and slightly endothermic for CD(4). The [W,C,2H](+) product ion reacts further at thermal energies with CH(4) to produce W(CH(2))(x)(+) (x = 2-4). At higher energies, the W(+) + CH(4) reaction forms WH(+) as the dominant ionic product with smaller amounts of WCH(3)(+), WCH(+), and WC(+) also formed. The energy dependent cross sections for endothermic formation of the various products are analyzed and allow the determination of D(0)(W(+)-CH(3)) approximately 2.31 +/- 0.10 eV, D(0)(W(+)-CH(2)) = 4.74 +/- 0.03 eV, D(0)(W(+)-CH) = 6.01 +/- 0.28 eV, and D(0)(W(+)-C) = 4.96 +/- 0.22 eV. We also examine the reverse reaction, [W,C,2H](+) + H(2) (D(2)) --> W(+) + CH(4) (CH(2)D(2)). Combining the cross sections for the forward and reverse processes yields an equilibrium constant from which D(0)(W(+)-CH(2)) = 4.72 +/- 0.04 eV is derived. Theoretical calculations performed at the B3LYP/HW+/6-311++G(3df,3p) level yield thermochemistry in reasonable agreement with experiment. These calculations help identify the structures and electronic states of the species involved and characterize the potential energy surface for the [W,C,4H](+) system.  相似文献   

15.
The photoactivity of RCo(CO)4 (R = H, CH3) complexes has been investigated and compared by means of state correlation diagrams connecting the low-lying singlet (1)E (d(Co) --> sigma*(Co-R) and d(Co) --> pi*(CO)) and (1)A1 (d(Co) --> pi*(CO)) electronic states accessible through UV irradiation, and the low-lying triplet states ((3)E and (3)A1), to the corresponding states of the primary products R + Co(CO)4 and CO(ax) + RCo(CO)3. The electronic absorption spectra have been calculated by time-dependent wave packet propagations on two-dimensional potential energy surfaces describing both channels of dissociation, namely the homolysis of the R-Co and the CO(ax)-Co bonds. It is shown that the absorption spectrum of HCo(CO)4 is characterized by two peaks; the most intense peaks for each set are located respectively at 42,659 and 45,001 cm(-1). The CH(3)Co(CO)4 absorption spectrum also gives two sets of signals with maximum intensities found at 42,581 and 51,515 cm(-1). These bands for both molecules are assigned to the two metal-to-ligand-charge-transfer (MLCT; d(Co) --> pi*(CO)) states. Three photoactive states have been determined in both molecules, namely the singlet metal-to-sigma-bond-charge-transfer (MSBCT) states (a(1)E and b(1)E), simultaneously dissociative for both the homolysis of CO and the R-Co bond, and the (3)A1 (sigma(Co-R) --> sigma*(Co-R)), dissociative along the R-Co bond.  相似文献   

16.
The Jahn-Teller effect in CH(3)CN(+) (X(2)E) and CD(3)CN(+) (X(2)E) has been found experimentally by zero kinetic energy (ZEKE) photoelectron spectroscopy using coherent extreme ultraviolet (XUV) radiation. The vibronic bands of CH(3)CN(+) (X(2)E) and CD(3)CN(+) (X(2)E) at about 4500 cm(-1) above the ground states have been recorded. The spectra consist mainly of the Jahn-Teller active C-C[triple bond]N bending (v(8)), the CN stretching (v(2)), the CH(3) (CD(3)) deforming (v(6)), and the C-C stretching (v(4)) vibronic excitations. The Jahn-Teller active vibronic bands (v(8)) have been assigned with a harmonic model including linear and quadratic Jahn-Teller coupling terms, taking into account only the single mode vibronic excitation. The ionization potentials of CH(3)CN and CD(3)CN have also been determined, and their values are 12.2040(+/-0.001) and 12.2286(+/-0.001) eV, respectively.  相似文献   

17.
The ion-pair dissociation dynamics of N(2)O -->(XUV) N(2)(+)(X (2)Sigma(g)(+), v) + O(-)((2)P(j)) at 16.248, 16.271, 16.389, and 16.411 eV have been studied using the velocity map imaging method and tunable XUV laser. The electronic structures of the ion-pair states have been studied by employing the ab initio quantum chemical calculation. The translational energy distributions and the angular distributions of the photofragments have been measured. The results show that about 40% of available energies are transformed into the translational energies, and the first excited vibrational states are populated most strongly for all four excitation energies. The anisotropy parameters beta are approximately 1. The ab initio calculations at the level of CASSCF6-311++g(3df) show that the equilibrium geometries of the ion-pair states are nonlinear with bond lengths R(N-N) = 1.10 A, R(N-O) = 2.15 A, and bond angle N-N-O = 103 degrees, respectively. The ion-pair states are formed by electron migration from the bonding sigma orbital of N[triple bond]N to the antibonding sigma orbital localized primarily on the O atom. Combining the experimental and theoretical results, it is concluded that the ion-pair dissociation occurs via predissociation of Rydberg states with (1)Sigma(+) symmetry, which converges to the ion-core N(2)O(+)(A (2)Sigma(+)).  相似文献   

18.
The H+LiF(X (1)sigma(+),upsilon=0-2,j=0)-->HF(X (1)sigma(+),upsilon',j')+Li(2S) bimolecular process is investigated by means of quantum scattering calculations on the chemically accurate X 2A' LiHF potential energy surface of Aguado et al. [A. Aguado, M. Paniagua, C. Sanz, and J. Roncero, J. Chem. Phys. 119, 10088 (2003)]. Calculations have been performed for zero total angular momentum for translational energies from 10(-7) to 10(-1) eV. Initial-state selected reaction probabilities and cross sections are characterized by resonances originating from the decay of metastable states of the H...F-Li and Li...F-H van der Waals complexes. Extensive assignment of the resonances has been carried out by performing quasibound states calculations in the entrance and exit channel wells. Chemical reactivity is found to be significantly enhanced by vibrational excitation at low temperatures, although reactivity appears much less favorable than nonreactive processes due to the inefficient tunneling of the relatively heavy fluorine atom strongly bound in van der Waals complexes.  相似文献   

19.
The hyperfine structures of the 2 (3)Sigma(g) (+), 3 (3)Sigma(g) (+), and 4 (3)Sigma(g) (+) states of Na(2) have been resolved with sub-Doppler continuous wave perturbation facilitated optical-optical double resonance spectroscopy via A (1)Sigma(u) (+) approximately b (3)Pi(u) mixed intermediate levels. The hyperfine patterns of these three states are similar. The hyperfine splittings of the low rotational levels are all very close to the case b(betaS) limit. As the rotational quantum number increases, the hyperfine splittings become more complicated and the coupling cases become intermediate between cases b(betaS) and b(beta J) due to spin-rotation interaction. We present a detailed analysis of the hyperfine structures of these three (3)Sigma(g) (+) states, employing both case b(betaS) and b(beta J) coupling basis sets. The results show that the hyperfine splittings of the (3)Sigma(g) (+) states are mainly due to the Fermi-contact interaction. The Fermi contact constants for the two d sigma Rydberg states, the 2 (3)Sigma(g) (+) and 4 (3)Sigma(g) (+), are 245+/-5 MHz and 225+/-5 MHz, respectively, while the Fermi contact constant of the s sigma 3 (3)Sigma(g) (+) Rydberg state is 210+/-5 MHz. The diagonal spin-spin and spin-rotation constants, and nuclear spin-electronic spin dipolar interaction parameters of the 3 (3)Sigma(g) (+) and 4 (3)Sigma(g) (+) states are also obtained.  相似文献   

20.
The temperature dependence of the rate constant of the chemiluminescence reaction C2H + O2 --> CH(A) + CO2, k1e, has been experimentally determined over the temperature range 316-837 K using pulsed laser photolysis techniques. The rate constant was found to have a pronounced positive temperature dependence given by k1e(T) = AT(4.4) exp(1150 +/- 150/T), where A = 1 x 10(-27) cm(3) s(-1). The preexponential factor for k1e, A, which is known only to within an order of magnitude, is based on a revised expression for the rate constant for the C2H + O(3P) --> CH(A) + CO reaction, k2b, of (1.0 +/- 0.5) x 10(-11) exp(-230 K/T) cm3 s(-1) [Devriendt, K.; Van Look, H.; Ceursters, B.; Peeters, J. Chem. Phys. Lett. 1996, 261, 450] and a k2b/k1e determination of this work of 1200 +/- 500 at 295 K. Using the temperature dependence of the rate constant k1e(T)/k1e(300 K), which is much more accurately and precisely determined than is A, we predict an increase in k(1e) of a factor 60 +/- 16 between 300 and 1500 K. The ratio of rate constants k2b/k1e is predicted to change from 1200 +/- 500 at 295 K to 40 +/- 25 at 1500 K. These results suggest that the reaction C2H + O2 --> CH(A) + CO2 contributes significantly to CH(A-->X) chemiluminescence in hot flames and especially under fuel-lean conditions where it probably dominates the reaction C2H + O(3P) --> CH(A) + CO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号