首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Well-resolved two-dimensional numerical simulations of the unsteady separated flow past a normal flat plate at low Reynolds numbers have been performed using a fractional step procedure with high-order spatial discretization. A fifth-order upwind-biased scheme is used for the convective terms and the diffusive terms are represented by a fourth-order central difference scheme. The pressure Poisson equation is solved using a direct method based on eigenvalue decomposition of the coefficient matrix. A systematic study of the flow has been conducted with high temporal and spatial resolutions for a series of Reynolds numbers. The interactions of the vortices shed form the shear layers in the near-and far-wake regions are studied. For Reynolds numbers less than 250 the vortices are observed to convect parallel to the freestream. However, at higher Reynolds numbers (500 and 1000), complex interactions including vortex pairing, tearing and deformations are seen to occur in the far-wake region. Values of the drag coefficient and the wake closure length are presented and compared with previous experimental and numerical studies.  相似文献   

2.
This paper investigates the unsteady flow and heat transfer characteristics of rectangular sources with and without an inclined plate in a channel. The results show that the installation of an inclined plate above an upstream source results in a periodically unsteady flow and it can effectively enhance the heat transfer performance. Moreover, the inclined angle of the plate is changed under different Reynolds numbers to study the heat transfer performance in the channel. Received on 18 June 1997  相似文献   

3.
Steady and unsteady asymmetric vortical flows around slender bodies at high angles of attack are solved using the unsteady, compressible, this-layer Navier-Stokes equations. An implicit, upwind-biased, flux-difference splitting, finite-volume scheme is used for the numerical computations. For supersonic flows past point cones, the locally conical flow assumption has been used for efficient computational studies of this phenomenon. Asymmetric flows past a 5° semiapex-angle circular cone at different angles of attack, free-stream Mach numbers, and Reynolds numbers has been studied in responses to different sources of disturbances. The effects of grid fineness and computational domain size have also been investigated. Next, the responses of three-dimensional supersonic asymmetric flow around a 5° circular cone at different angles of attack and Reynolds numbers to short-duration sideslip disturbances are presented. The results show that flow asymmetry becomes stronger as the Reynolds number and angles of attack are increased. The asymmetric solutions show spatial vortex shedding which is qualitatively similar to the temporal vortex shedding of the unsteady locally conical flow. A cylindrical afterbody is also added to the same cone to study the effect of a cylindrical part on the flow asymmetry. One of the cases of flow over a cone-cylinder configuration is validated fairly well by experimental data.  相似文献   

4.
This experimental investigation deals with transition phenomena of a separated boundary layer under unsteady inlet flow conditions. The main purpose of this investigation is to understand the influence of the rotor-stator interaction in turbomachinery on the subsequent, highly loaded boundary layer. The research project is divided into two phases. In the first phase, which has been completed recently, only the variation of mean velocity caused by upstream blades was simulated in the experiments while the free-stream turbulence intensity was retained at a constant low level. The experiments are carried out in an Eifel-type wind tunnel to investigate the laminar separated boundary layer of a flat plate under oscillating inlet conditions. The adverse pressure gradient, similar to that of turbomachines, is generated by the contoured upper wall. The unsteadiness is produced by a rotating flap located downstream of the test section. The reduced frequency, the amplitude and the mean Reynolds number are varied to simulate the conditions prevailing in turbomachines. In addition to the Kelvin–Helmholtz instability of the separated shear layer, a lower frequency instability was observed. This is frequently referred to as `free shear layer flapping' and results in two distinctly different ways of re-attachment, depending primarily on the Reynolds number. For low momentum thickness Reynolds numbers at the separation point, large-scale vortices locked to the frequency of the unsteady main flow are identified. They originate nearly at the top of the separation bubble and are ejected downstream. A fully turbulent boundary layer develops after these vortices mix out. For higher Reynolds numbers, transition is completed within a short length of the free shear layer and there-attachment region. The characteristic momentum thickness Reynolds number separating these two regimes in unsteady flow is about 125. The Strouhal number (reduced frequency) does not appear to have any significant effect. Based on the experimental results, this behaviour is discussed in some detail. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
On the basis of a numerical solution of the unsteady Navier-Stokes equations, the flow past a finite plate with an upstream-moving surface is investigated. For the Reynolds numbers Re =102−104, the flow past the plate is analyzed as a function of the relative plate surface velocity. On the basis of this analysis a limiting mathematical model of the flow as Re → ∞ is proposed.  相似文献   

6.
The aim of this work is to determine the linear stability of a compressible Rayleigh layer and to ascertain what role unsteady effects play. A Rayleigh layer is formed when an infinite flat plate is impulsively set in motion in its own plane with constant velocity beneath an initially quiescent fluid. When the fluid is compressible there is a motion both parallel and normal to the plate. The classical boundary-layer scaling is employed to determine solutions which are expressed in terms of a similarity variable and are valid for a large range of Mach, Prandtl and Reynolds numbers. Solutions are presented for both an adiabatic and iso-thermal temperature boundary condition at the plate. The temporal stability of the flow is considered by solving an Orr–Sommerfeld system: here the underlying flow is calculated at a certain time and the instantaneous stability to viscous travelling waves is determined. The stability is seen to be altered by changing the Mach number (an increase of which decreases the stability of the flow), and also by cooling and heating the wall. These results are limited by the fact that the growth of the layer in time is not taken into account. To include this we consider the large Reynolds number limit and use a triple-deck structure to determine the modes characteristics. The triple-deck approach is used to determine an asymptote to the lower branch of the neutral curve and unsteady effects can be included in a consistent manner. For the upper branch, however, a five-deck structure is required due to the fact that the critical layer is now distinct from the viscous sublayer. The upper-branch stability is only calculated to the first order which is sufficient to give an insight into the stability characteristics.  相似文献   

7.
The two-dimensional and unsteady free stream flow of power law fluids past a long square cylinder has been investigated numerically in the range of conditions 60≤Re≤160 and 0.5≤n≤2.0. Over this range of Reynolds numbers, the flow is periodic in time. A semi-explicit finite volume method has been used on a non-uniform collocated grid arrangement to solve the governing equations. The global quantities such as drag coefficients, Strouhal number and the detailed kinematic variables like stream function, vorticity and so on, have been obtained for the above range of conditions. While, over this range of Reynolds number, the flow is known to be periodic in time for Newtonian fluids, a pseudo-periodic flow regime displaying more than one dominant frequency in the lift is observed for shear-thinning fluids. This seems to occur at Reynolds numbers of 120 and 140 for n=0.5 and 0.6, respectively. Broadly speaking, the smaller the value of the power law index, lower is the Reynolds number of the onset of the pseudo-periodic regime. This work is concerned only with the fully periodic regime and, therefore, the range of Reynolds numbers studied varies with the value of the power law index. Not withstanding this aspect, in particular here, the effects of Reynolds number and of the power law index have been elucidated in the unsteady laminar flow regime. The leading edge separation in shear-thinning fluids produces an increase in drag values with the increasing Reynolds number, while shear-thickening fluid behaviour delays this separation and shows the lowering of the drag coefficient with the Reynolds number. Also, the preliminary results suggest the transition from the steady to unsteady flow conditions to occur at lower Reynolds numbers in shear-thinning fluids than that in Newtonian fluids.  相似文献   

8.
It is common knowledge that flow around bluff bodies exhibits oscillatory behaviour. The aim of the present study is to compute the steady two-dimensional flow around a square cylinder at different Reynolds numbers and to determine the onset of unsteadiness through a linear stability analysis of the steady flow. Stability of the steady flow to small two-dimensional perturbations is analysed by computing the evolution of these perturbations. An analysis of various time-stepping techniques is carried out to select the most appropriate technique for predicting the growth of the perturbations and hence the stability of the flow. The critical Reynolds number is determined from the growth rate of the perturbations. Computations are then made for periodic unsteady flow at a Reynolds number above the critical value. The predicted Strouhal number agrees well with experimental data. Heat transfer from the cylinder is also studied for the unsteady laminar flow.  相似文献   

9.
利用数值方法对长宽比为1/3, 1和3的棱柱绕流在雷诺数为100的非稳态流动特性进行了分析和研究。采用有限体积法对棱柱绕流的二维流动N-S方程进行离散求解,分析和研究了非稳态的棱柱绕流流场,升力系数,阻力系数和涡动特性,数值模拟的结果与相关文献的数据比较吻合。通过上述研究能够为了解棱柱绕流的非稳态流动特性提供有力的帮助。而对棱柱三维流动的模拟分析和对雷诺数的变化对棱柱流动特性的影响进行研究,将为掌握棱柱绕流的工程特性打下基础。  相似文献   

10.
A combined numerical and experimental investigation has been carried out to study the flow behaviour in a spacer-filled channel, representative of those used in spiral-wound membrane modules. Direct numerical simulation and particle image velocimetry were used to investigate the fluid flow characteristics inside a 2 × 2 cell at Reynolds numbers that range between 100 and 1000. It was found that the flow in this geometry moves parallel to and also rotates between the spacer filaments and that the rate of rotation increases with Reynolds number. The flow mechanisms, transition process and onset of turbulence in a spacer-filled channel are investigated including the use of the velocity spectra at different Reynolds numbers. It is found that the flow is steady for Re < 200 and oscillatory at Re ~ 250 and increasingly unsteady with further increases in Re before the onset of turbulent flow at Re ~ 1000.  相似文献   

11.
In this paper we present a discontinuous Galerkin (DG) method designed to improve the accuracy and efficiency of laminar flow simulations at low Mach numbers using an implicit scheme. The algorithm is based on the flux preconditioning approach, which modifies only the dissipative terms of the numerical flux. This formulation is quite simple to implement in existing implicit DG codes, it overcomes the time‐stepping restrictions of explicit multistage algorithms, is consistent in time and thus applicable to unsteady flows. The performance of the method is demonstrated by solving the flow around a NACA0012 airfoil and on a flat plate, at different low Mach numbers using various degrees of polynomial approximations. Computations with and without flux preconditioning are performed on different grid topologies to analyze the influence of the spatial discretization on the accuracy of the DG solutions at low Mach numbers. The time accurate solution of unsteady flow is also demonstrated by solving the vortex shedding behind a circular cylinder at the Reynolds number of 100. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
An experimental system that generates and visualizes unsteady motions in air was employed to visualize vortex developments over bluff bodies in impulsive started flow. The study presents photographic sequences of impulsive flow over circular and square cylinders for flow Reynolds number of 200. A comparison of physical and numerical visualization for impulsive flow over a flat plate at 50° angle of attack and for flow Reynolds number of 1,000 is also presented. The visualization examples reveal the details of vortex separation and subsequent developments and may be utilized as a reference to guide and economize computer visualization efforts on unsteady separated flows.Assistant Professor of Aerospace Engineering  相似文献   

13.
Flow visualization and LDV measurements are performed on laminar flow in a helical square duct with finite pitch. The experimental observations are compared to results of numerical calculations employing the finite-volume method and assuming a fully developed flow. Good agreement is found between measured and computed velocity profiles. This suggests that the physical velocity components used in the numerical calculations are suitable to describe the flow. It is further demonstrated that the contravariant velocity components employed by some authors may lead to results that are difficult to interpret. Two stable solution branches are detected in the numerical calculations. For Reynolds numbers between the stable branches, unsteady and fully developed computations predict an oscillating flow between a two-vortex and a four-vortex structure. In the experiments, the flow normally retained a stable two-vortex structure in the numerically predicted unstable regime. However, by disturbing the flow at the duct inlet, a four-vortex flow that showed similarities to the computed flow could occasionally be obtained. For Reynolds numbers above 600, unsteady flow behavior was observed both experimentally and numerically, which might be an early sign of transition. In the experiments, Gdrtler-like extra vortices emerged spontaneously from the outer wall without disturbing the flow at the inlet. The same phenomenon was observed in the numerical calculations, assuming an unsteady and fully developed flow, but the extra vortices appeared with a lower frequency than in the experiments.  相似文献   

14.
A two-dimensional numerical study is carried out to understand the influence of cross buoyancy on the vortex shedding processes behind two equal isothermal square cylinders placed in a tandem arrangement at low Reynolds numbers. The spacing between the cylinders is fixed with five widths of the cylinder dimension. The flow is considered in an unbounded medium, however, fictitious confining boundaries are chosen to make the problem computationally feasible. Numerical calculations are performed by using a finite volume method based on the PISO algorithm in a collocated grid system. The range of Reynolds number is chosen to be 50–150. The flow is unsteady laminar and two-dimensional in this Reynolds number range. The mixed convection effect is studied for Richardson number range of 0–2 and the Prandtl number is chosen constant as 0.71. The effect of superimposed thermal buoyancy on flow and isotherm patterns are presented and discussed. The global flow and heat transfer quantities such as overall drag and lift coefficients, local and surface average Nusselt numbers and Strouhal number are calculated and discussed for various Reynolds and Richardson numbers.  相似文献   

15.
Membrane wings are used both in nature and small aircraft as lifting surfaces. Separated flows are common at low Reynolds numbers and are the main sources of unsteadiness. Yet, the unsteady aspects of the fluid–structure interactions of membrane airfoils are largely unknown. An experimental study of unsteady aerodynamics of two-dimensional membrane airfoils at low Reynolds numbers has been conducted. Measurements of membrane shape with a high-speed camera were complemented with the simultaneous measurements of unsteady velocity field with a high frame-rate particle image velocimetry system and flow visualization. Vibrations of the membrane and mode shapes were investigated as a function of angle of attack and free stream velocity. While the mean membrane shape is not very sensitive to angle of attack, the amplitude and mode of the vibrations of the membrane depend on the relative location and the magnitude of the unsteadiness of the separated shear layer. The results indicate strong coupling of unsteady flow with the membrane oscillations. There is evidence of coupling of membrane oscillations with the vortex shedding in the wake, in particular, for the post-stall incidences. Comparison of rigid (but cambered) and flexible membrane airfoils shows that the flexibility might delay the stall. Hence this is a potential passive flow control method using flexibility in nature and engineering applications.  相似文献   

16.
This paper addresses by means of high-resolution numerical simulations and experimental quantitative imaging the three-dimensional unsteady separation process induced by large-amplitude heaving oscillations of a low-aspect-ratio wing under low-Reynolds-number conditions. Computed results are found to be in good agreement with experimental flow visualizations and PIV measurements on selected cross-flow planes. The complex unsteady three-dimensional flow structure generated during dynamic stall of the low-aspect-ratio wing is elucidated. The process is characterized by the generation of a leading-edge vortex system which is pinned at the front corners of the plate and which exhibits intense transverse flow toward the wing centerline during its initial stages of development. This vortex detaches from the corners and evolves into an newly found arch-type structure. The legs of the arch vortex move along the surface toward the wing centerline and reconnect forming a ring-like structure which is shed as the next plunging cycle begins. Vortex breakdown, total collapse and reformation of the wing tip vortices are also observed at various stages of the heaving motion. At the relatively high value of reduced frequency considered, these basic flow elements of the complex three-dimensional dynamic stall process are found to persist over a range of Reynolds numbers.  相似文献   

17.
 Results of a comparative evaluation of three heat transfer enhancement strategies for forced convection cooling of a parallel plate channel populated with heated blocks, representing electronic components mounted on printed circuit boards, are reported. Heat transfer in the reference geometry, the asymmetrically heated parallel plate channel, is compared with that for the basic grooved channel, and the same geometry enhanced by cylinders and vanes placed above the downstream edge of each heated block. In addition to conventional heat transfer and pressure drop measurements, holographic interferometry combined with high-speed cinematography was used to visualize the unsteady temperature fields in the self-sustained oscillatory flow. The locations of increased heat transfer within one channel periodicity depend on the enhancement technique applied, and were identified by analyzing the unsteady temperature distributions visualized by holographic interferometry. This approach allowed gaining insight into the mechanisms responsible for heat transfer enhancement. Experiments were conducted at moderate flow velocities in the laminar, transitional and turbulent flow regimes. Reynolds numbers were varied in the range Re = 200–6500, corresponding to flow velocities from 0.076 to 2.36 m/s. Flow oscillations were first observed between Re = 1050 and 1320 for the basic grooved channel, and around Re = 350 and 450 for the grooved channels equipped with cylinders and vanes, respectively. At Reynolds numbers above the onset of oscillations and in the transitional flow regime, heat transfer rates in the investigated grooved channels exceeded the performance of the reference geometry, the asymmetrically heated parallel plate channel. Heat transfer in the grooved channels enhanced with cylinders and vanes showed an increase by a factor of 1.2–1.8 and 1.5–3.5, respectively, when compared to data obtained for the basic grooved channel; however, the accompanying pressure drop penalties also increased significantly. Received on 5 April 2001  相似文献   

18.
In this experimental study a thorough analysis of the steady and unsteady flow field in a realistic transparent silicone lung model of the first bifurcation of the upper human airways will be presented. To determine the temporal evolution of the flow time-resolved particle-image velocimetry recordings were performed for a Womersley number range 3.3 ≤ α ≤ 5.8 and Reynolds numbers of Re D = 1,050, 1,400, and 2,100. The results evidence a highly three-dimensional and asymmetric character of the velocity field in the upper human airways, in which the influence of the asymmetric geometry of the realistic lung model plays a significant role for the development of the flow field in the respiratory system. At steady inspiration, the flow shows independent of the Reynolds number a large zone with embedded counter-rotating vortices in the left bronchia ensuring a continuous streamwise transport into the lung. At unsteady flow the critical Reynolds number, which describes the onset of vortices in the first bifurcation, is increased at higher Womersley number and decreased at higher Reynolds number. At expiration the unsteady and steady flows are almost alike.  相似文献   

19.
In this study the flow within an interrupted fin design, the inclined louvered fin, is investigated experimentally through visualisation. The inclined louvered fin is a hybrid of the offset strip fin and standard louvered fin, aimed at improved performance at low Reynolds numbers for compact heat exchangers. The flow behaviour is studied in six geometrically different configurations over a range of Reynolds numbers and quantified using the concept of ‘fin angle alignment factor’. The transition from steady laminar to unsteady flow was studied in detail. The fin geometry had a very large impact on the transitional flow behaviour, especially on vortex shedding.  相似文献   

20.
The unsteady turbulent flow around bodies at high Reynolds number is predicted by an anisotropic eddy-viscosity model in the context of the Organised Eddy Simulation (OES). A tensorial eddy-viscosity concept is developed to reinforce turbulent stress anisotropy, that is a crucial characteristic of non-equilibrium turbulence in the near-region. The theoretical aspects of the modelling are investigated by means of a phase-averaged PIV in the flow around a circular cylinder at Reynolds number 1.4×105. A pronounced stress–strain misalignment is quantified in the near-wake region of the detached flow, that is well captured by a tensorial eddy-viscosity concept. This is achieved by modelling the turbulence stress anisotropy tensor by its projection onto the principal matrices of the strain-rate tensor. Additional transport equations for the projection coefficients are derived from a second-order moment closure scheme. The modification of the turbulence length scale yielded by OES is used in the Detached Eddy Simulation hybrid approach. The detached turbulent flows around a NACA0012 airfoil (2-D) and a circular cylinder (3-D) are studied at Reynolds numbers 105 and 1.4×105, respectively. The results compared to experimental ones emphasise the predictive capabilities of the OES approach concerning the flow physics capture for turbulent unsteady flows around bodies at high Reynolds numbers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号