首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 123 毫秒
1.
Platinum-catalyzed synthesis of water-soluble gold-platinum nanoparticles   总被引:2,自引:0,他引:2  
The ability to control composition and size in the synthesis of bimetallic nanoparticles is important for the exploitation of the bimetallic catalytic properties. This paper reports findings of an investigation of a new approach to the synthesis of gold-platinum (AuPt) bimetallic nanoparticles in aqueous solution via one-phase reduction of AuCl(4-) and PtCl(4)(2-) using a combination of reducing and capping agents. Hydrogen served as a reducing agent for the reduction of Pt(II), whereas acrylate was used as a reducing agent for the reduction of Au(III). The latter reaction was found to be catalyzed by the formation of Pt as a result of the reduction of Pt(II). Acrylate also functioned as capping agent on the resulting nanocrystals. By controlling the feed ratios of AuCl(4-) and PtCl(4)(2-) and the relative concentrations of acrylate, an effective route for the preparation of AuPt nanoparticles with bimetallic compositions ranging from approximately 4 to 90% Au and particle sizes ranging from 2 to 8 nm has been demonstrated. The composition, size, and shell properties were characterized using transmission electron microscopy, direct current plasma-atomic emission spectroscopy, Fourier transform infrared spectroscopy, and X-ray diffraction. Implications of the results to the exploration of bifunctional catalysts are also briefly discussed.  相似文献   

2.
The synthesis and characterization of 1-3-nm diameter, structurally well-defined, bimetallic AuAg dendrimer-encapsulated nanoparticles (DENs) are reported. Three different bimetallic structures were examined: AuAg alloys synthesized by cocomplexation and subsequent reduction of dendrimer-encapsulated Au3+ and Ag+ and core/shell [Au](Ag) and [AuAg alloy](Ag) structures (for structured materials, brackets indicate the core metal and parentheses indicate the shell metal) synthesized by a sequential loading method. Depending on the shell metal and its oxidation state, the AuAg nanoparticles can be extracted from the dendrimer into an organic phase using different surfactants. This provides a means for analyzing the composition of the shell. UV-vis, TEM, and single-particle X-ray energy dispersive spectroscopy (EDS) were used to characterize the bimetallic DENs before and after extraction and show that the extraction step does not alter the size or composition of the bimetallic nanoparticles.  相似文献   

3.
The understanding of how the formation of metal nanoparticles in aqueous solutions is influenced by the presence of presynthesized nanoparticles is important for precise control over size, shape, and composition of nanoparticles. New insights into the catalytic mechanism of Pt nanoparticles are gained by studying the formation of gold nanoparticles from the reduction of AuCl(4)(-) in aqueous solution in the presence of presynthesized Pt nanoparticles as a model system. The measurement of changes of the surface plasmon resonance band of gold nanoparticles, along with TEM analysis of particle size and morphology, provided an important means for assessing the reaction kinetics. The reductive mediation of Pt-H species on the Pt nanocrystal surface is believed to play an important role in the Pt-catalyzed formation of gold nanoparticles. This important physical insight is evidenced by comparison of the rates of the Pt-catalyzed formation of gold nanoparticles in the presence and in the absence of hydrogen (H(2)), which adsorb dissociatively on a Pt nanocrystal surface forming Pt-H species. Pt-H effectively mediates the reduction of AuCl(4)(-) toward the formation of gold nanoparticles. Implications of the findings to the controllability over size, composition, and morphology of metal nanoparticles in the aqueous synthesis environment are also discussed.  相似文献   

4.
Gold nanoparticle-doped poly(2-vinylpyridine) (P2VP) microcapsules and foam films were synthesized and assembled at the P2VP chloroform solution/HAuCl(4) aqueous solution interface at 25 °C. It was found that Au nanoparticles with the average diameter of 2.1 nm were homogeneously embedded in and adsorbed on the walls of the capsules and foams, the nanoparticles were composed of Au(0) and Au(III) with the molar ratio of about 75/25, and the mass percent of Au elements was measured to be 19.65%. The formation of the nanostructures was attributed to the self-assembly of P2VP at the liquid/liquid interface, the simultaneous reduction of AuCl(4)(-) ions by a small amount of ethanol in the chloroform and adsorption of AuCl(4)(-) ions. After irradiated by UV-light for 1h, the average diameter of the nanoparticles was found to be 2.2 nm, and the AuCl(4)(-) ions were transformed to Au(0) completely. The catalytic performance of these composite nanostructures were evaluated by using the reduction of 4-nitrophenol (4-NP) by potassium borohydride in aqueous solutions. The catalytic activity was very high in the first cycle, decreased rapidly and slightly in the second and third cycles, respectively, due to the aggregation of some nanoparticles, and stabilized after the third cycle.  相似文献   

5.
In this paper, we have demonstrated for the first time, the superb efficiency of aqueous extract of dried leaves of mahogany (Swietenia mahogani JACQ.) in the rapid synthesis of stable monometallic Au and Ag nanoparticles and also Au/Ag bimetallic alloy nanoparticles having spectacular morphologies. Our method was clean, nontoxic and environment friendly. When exposed to aqueous mahogany leaf extract, competitive reduction of Au(III) and Ag(I) ions present simultaneously in same solution leads to the production of bimetallic Au/Ag alloy nanoparticles. UV-visible spectroscopy was used to monitor the kinetics of nanoparticles formation. UV-visible spectroscopic data and TEM images revealed the formation of bimetallic Au/Ag alloy nanoparticles. Mahogany leaf extract contains various polyhydroxy limonoids which are responsible for the reduction of Au(III) and Ag(I) ions leading to the formation and stabilization of Au and Ag nanopaticles.  相似文献   

6.
Keggin ion-mediated synthesis of Au core-Ag shell bimetallic nanoparticles is described. Exposure of photochemically reduced aqueous (PW12O40)3- Keggin ions to AuCl4- ions leads to the formation of stable gold nanoparticles capped by the Keggin ions. The surface-bound Keggin ions may then be activated by UV irradiation and, upon exposure to Ag+ ions, reduce the metal ions to form a silver shell around the gold core. That the capping agent not only stabilizes the metal nanoparticles but also plays the role of a switchable reducing agent is a highlight of this approach with important implications in nanomaterials synthesis and catalysis.  相似文献   

7.
Gold nanowires with a two-dimensional (2-D) network structure were formed by citrate reduction of AuCl4- with a low concentration of citrate. The structure change during the growth processes was observed by transmission electron microscopy (TEM) and the variation in concentrations of gold species in the aqueous solution was monitored by UV-vis spectra and Inductively Coupled Argon Plasma Emission Spectrophotometer (ICAP). The formation of 2-D gold nanowires was induced by the small amount of reducing agent because the preliminary gold nanoparticles formed by reduction of AuCl4- were thermodynamically unstable in the aqueous solution due to the insufficient capping of citrate. One of the key points of nanowire formation is the preferential adsorption of AuCl4- instead of citrate ions on the surface of the preliminary gold particles, which results in an attracting force between gold nanoparticles. We propose a hit-to-stick-to-fusion model, in which gold nanoparticles adhere by the attraction force and stick together, causing selective deposition of reduced gold metallic species on the concave surface of the two sticking particles, followed by fusion into nanowires. Nanowires then connect with each other, forming a network structure. The evidence obtained from TEM observation of transformation from gold nanowires on a TEM grid to large nanoparticles by hydrogen gas reduction and time-resolved measurements of gold ions suggest that gold ions not only are crucial for the growth of gold nanowires but also play an important role in stabilizing the shape of gold nanowires during the formation process. This method for synthesizing 2-D gold nanowires is simple and relatively easy application to the synthesis of other metallic nanowires such as silver or platinum is expected.  相似文献   

8.
In view of the recent finding that the bimetallic AuPt nanoparticles prepared by molecular-capping-based colloidal synthesis and subsequent assembly on carbon black support and thermal activation treatment exhibit alloy properties, which is in sharp contrast to the bimetallic miscibility gap known for the bulk counterparts in a wide composition range, there is a clear need to assess the electrocatalytic properties of the catalysts prepared with different bimetallic composition and different thermal treatment temperatures. This paper reports recent results of such an investigation of the electrocatalytic methanol oxidation reaction (MOR) activities of the carbon-supported AuPt nanoparticle catalysts with different bimetallic composition and thermal treatment temperatures. Au(m)Pt(100)(-)(m) nanoparticles of 2-3 nm core sizes with different atomic compositions ranging from 10% to 90% Au (m = 10 approximately 90) have been synthesized by controlling the feeding of the metal precursors used in the synthesis. The electrocatalytic MOR activities of the carbon-supported AuPt bimetallic catalysts were characterized in alkaline electrolytes. The catalysts with 65% to 85% Au and treated at 500 degrees C were found to exhibit maximum electrocatalytic activities in the alkaline electrolytes. The findings, together with a comparison with some well-documented catalysts as well as recent experimental and theoretical modeling results, have revealed important insights into the participation of CO(ad) and OH(ad) on Au sites in the catalytic reaction of Pt in the AuPt alloys with approximately 75% Au. The insights are useful for understanding the correlation of the bifunctional electrocatalytic activity of the bimetallic nanoparticle catalysts with the bimetallic composition and the thermal treatment temperatures.  相似文献   

9.
We demonstrate a unique capability in partially oxidizing the oligoaniline shell on gold nanoparticles to polyaniline. Because of the solubility difference, the unreacted inner shell section can be selectively dissolved by 2-propanol, giving yolk-shell nanostructures and, thus, making it possible for assessing the oxidized section. The ionic diffusion through the polymer shell is found to be the rate-determining step in the overall process. Conservative estimates show that the diffusion coefficient of AuCl(4)(-) is at least 700 times slower than that of the typical rate values in traditional studies. It is most likely caused by the lack of micropores in the polymer structures. Such mircopores are hard to avoid in preparing polymer membranes by casting or drying of polymers dissolved in organic solvents. We can rule out the presence of irregular pores on the basis of the uniformly oxidized shell section. With the nanoscale shells, the system is sensitive enough to detect minute changes in the shell or small differences among the individual nanoparticles. Even with a small increase in porosity, for example, when the polyaniline shell is swollen using small amounts of DMF (3%, 5%, or 10% in aqueous solutions), the diffusion coefficient of AuCl(4)(-) increases to 4, 11, and 17 times, respectively. Thus, our study demonstrates a new methodology for studying the diffusion of ions in hydrophobic polymers.  相似文献   

10.
Li Wang 《Talanta》2010,82(1):113-2112
A method to fabricate AuAg bimetallic nanoparticles film by H2O2-mediated reduction of silver was reported. Gold nanoparticles (Au NPs) were first adsorbed onto the surface of a self-assembled 2-aminoethanethiol monolayer-modified gold film or 3-aminopropyltriethoxysilane (APTES) monolayer-modified quartz slide. Upon further treatment of this modified film with the solution containing silver nitrate (AgNO3) and H2O2, silver was deposited on the surface of Au NPs. The size of the AuAg bimetallic particles could be readily tuned by manipulating the concentration of H2O2. Surface plasmon resonance (SPR) was used to investigate the process, the deposition of silver on Au NPs modified gold film resulted in an obvious decrease of depth in the SPR reflectance intensity and minimum angle curves (SPR R-θ curves), which may be utilized for the quantitative SPR detection of the analyte, H2O2. Combination of the biocatalytic reaction that could yield H2O2 by using the enzyme, glucose oxidase, with the deposition of silver may enable the design of a glucose biosensor by SPR technique. Furthermore, we evaluated the AuAg bimetallic nanoparticles film for their ability to be an effective substrate for surface-enhanced Raman scattering (SERS).  相似文献   

11.
Bimetallic Au-Pt nanoparticles have been generated inside a relatively porous SiO2 film matrix by a two-layer (2L) coating methodology. Two overlapping coating layers were deposited on glass substrates from Au- and Pt-doped inorganic-organic hybrid silica sols and air dried at 60 degrees C. The 2L coating assembly was then UV- and followed by heat-treated at 450 and 550 degrees C in air. UV-treatment decomposes AuCl(4)(-) and PtCl(6)(2-) ions in the respective layers and the subsequent heat treatment in air influences the diffusion of Au and Pt nanometals to each other to form bimetallic Au-Pt nanoparticles inside the silica matrix. A UV-visible study showed damping of Au-plasmon after heat treatments. GIXRD and TEM analyses reveal the formation of a partial Au/Pt solid solution with a small fraction of Pt ( approximately 16%), while the major fraction of Pt remains fused with the Au(Pt) solid solution.  相似文献   

12.
Mild fabrication of anisotropic metal-lipid nanotube (LNT) nanocomposites, in which Au nanoparticles of 3-10 nm wide are organized in a glycolipid nanotube hollow cylinder, has been achieved by filling the internal channel of the LNT with HAuCl(4) aqueous solution by capillary force and subsequent photochemical reduction of [AuCl(4)](-).  相似文献   

13.
We report here on the effects that the solution properties of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) block copolymers have on the reduction of hydrogen tetrachloroaurate(III) hydrate (HAuCl4.3H2O) and the size of gold nanoparticles produced. The amphiphilic block copolymer solution properties were modulated by varying the temperature and solvent quality (water, formamide, and their mixtures). We identified two main factors, (i) block copolymer conformation or structure (e.g., loops vs entanglements, nonassociated polymers vs micelles) and (ii) interactions between AuCl4- ions and block copolymers (attractive ion-dipole interactions vs repulsive interactions due to hydrophobicity), to be important for controlling the competition between the reactivities of AuCl4- reduction in the bulk solution to form gold seeds and on the surface of gold seeds (particles) and the particle size determination. The particle size increase observed with increased temperature in aqueous solutions is attributed to enhanced hydrophobicity of the block copolymer, which favors AuCl4- reduction on the surface of seeds. The lower reactivity and higher particle sizes observed in formamide solutions are attributed to the shielding of ion-dipole interaction between AuCl4- ions and block copolymers by formamide, which overcomes the beneficial effects of formamide on the block copolymer conformation (lower micelle concentration).  相似文献   

14.
Gold nanoparticles (AuNP's) prepared through a controllable synthesis and aggregation process are attractive for their unique properties that arise from their surface plasmon resonances (SPRs). However, aggregation-controlled AuNP's on amorphous surfaces have not been well explored. In this study, we present a simple in situ synthesis method for preparing AuNP's in which the AuNP's self-aggregate into microscale Candock-leaf-like structures on a polyelectrolyte film (PEF) surface. In this approach, the PEF plays an important role in adsorbing and storing AuCl(4)(-) as well as in controlling the release speed of AuCl(4)(-) in the preparation process. The mechanism for forming these Candock-leaf-like structures has been illustrated by both the growth process of gold nanoparticles and the Ostwald ripenning of the aggregations. AuNP's with a unique structure exhibited significantly enhanced surface Raman scattering and strong superhydrophobicity.  相似文献   

15.
This paper deals with bimetallic (Fe/Pd) nanoparticle synthesis inside the membrane pores and application for catalytic dechlorination of toxic organic compounds form aqueous streams. Membranes have been used as platforms for nanoparticle synthesis in order to reduce the agglomeration, encountered in solution phase synthesis which leads to a dramatic loss of reactivity. The membrane support, polyvinylidene fluoride (PVDF) was modified by in situ polymerization of acrylic acid in aqueous phase. Subsequent steps included ion exchange with Fe2+, reduction to Fe0 with sodium borohydride and Pd deposition. Various techniques, such as STEM, EDX, FTIR and permeability measurements, were used for membrane characterization and showed that bimetallic (Fe/Pd) nanoparticles with an average size of 20–30 nm have been incorporated inside of the PAA-coated membrane pores. The Fe/Pd-modified membranes showed a high reactivity toward a model compound, 2,2′-dichlorobiphenyl and a strong dependence of degradation on Pd (hydrogenation catalyst) content. The use of convective flow substantially reduces the degradation time: 43% conversion of dichlorobiphenyl to biphenyl can be achieved in less than 40 s residence time. Another important aspect is the ability to regenerate and reuse the Fe/Pd bimetallic systems by washing with a solution of sodium borohydride, because the iron becomes inactivated (corroded) as the dechlorination reaction proceeds.  相似文献   

16.
As nanoparticle syntheses in aqueous and organic systems have their own merits and drawbacks, specific applications may call for the transfer of newly formed nanoparticles from a polar to a non-polar environment (or vice versa) after synthesis. This critical review focuses on the application of phase transfer in nanoparticle synthesis, and features core-shell structures in bimetallic nanoparticles, replacement reactions in organic media, and catalytic properties of various nanostructures. It also describes the reversible organic and aqueous phase transfer of semiconductor and metallic nanoparticles for biological applications, and the use of phase transfer in depositing noble metals on semiconductor nanoparticles (258 references).  相似文献   

17.
We report on the use of Neem (Azadirachta indica) leaf broth in the extracellular synthesis of pure metallic silver and gold nanoparticles and bimetallic Au/Ag nanoparticles. On treatment of aqueous solutions of silver nitrate and chloroauric acid with Neem leaf extract, the rapid formation of stable silver and gold nanoparticles at high concentrations is observed to occur. The silver and gold nanoparticles are polydisperse, with a large percentage of gold particles exhibiting an interesting flat, platelike morphology. Competitive reduction of Au3+ and Ag+ ions present simultaneously in solution during exposure to Neem leaf extract leads to the synthesis of bimetallic Au core-Ag shell nanoparticles in solution. Transmission electron microscopy revealed that the silver nanoparticles are adsorbed onto the gold nanoparticles, forming a core-shell structure. The rates of reduction of the metal ions by Neem leaf extract are much faster than those observed by us in our earlier studies using microorganisms such as fungi, highlighting the possibility that nanoparticle biological synthesis methodologies will achieve rates of synthesis comparable to those of chemical methods.  相似文献   

18.
Plectonema boryanum UTEX 485, a filamentous cyanobacterium, has been reacted with aqueous Au(S(2)O(3))(2)(3)(-) and AuCl(4)(-) solutions ( approximately 400-550 mg/L Au) at 25-100 degrees C for up to 1 month and at 200 degrees C for 1 day. The interaction of cyanobacteria with aqueous Au(S(2)O(3))(2)(3)(-) promoted the precipitation of cubic (100) gold nanoparticles (<10-25 nm) at membrane vesicles and admixed with gold sulfide within cells and encrusted on the cyanobacteria, whereas reaction with AuCl(4)(-) resulted in the precipitation of octahedral (111) gold platelets ( approximately 1-10 microm) in solutions and nanoparticles of gold (<10 nm) within bacterial cells. Functional groups imaged by negative ion TOF-SIMS on (111) faces of the octahedral platelets were predominantly Cl and CN, with smaller amounts of C(2)H and CNO.  相似文献   

19.
The deposition of Au and Ag, locally and from bulk solution, on poly(3,4-ethylenedioxythiophene) (PEDOT) was studied. Specifically, PEDOT was electrochemically polymerized onto a glassy carbon (GC) electrode and used for bulk deposition of Au and Ag from their respective ions dissolved in the solution as well as for the local deposition of these metals using scanning electrochemical microscopy (SECM). These two sets of experiments were utilized to investigate the difference between Au and Ag electrochemical deposition on PEDOT. In particular, SECM experiments, which were conducted by the controlled anodic dissolution of Au and Ag microelectrodes close to GC/PEDOT, probed the effect of different PEDOT oxidation states on local deposition. The current-time transients recorded during the deposition, combined with scanning electron microscopy and EDX analysis provided insight into the reduction processes. AuCl(4)(-) and Ag(+) ions were electrochemically reduced at a potential equal to and more negative than the ions redox potentials (0.4 and 0.2 V, respectively) and more positive than -0.7 V, where the PEDOT starts transforming into the reduced, i.e. insulating, state. We found that the electroreduction of Ag(+) ions was diffusion-controlled and the PEDOT film served as a simple conductor. On the other hand, the reduction of AuCl(4)(-) ions was enhanced on GC/PEDOT as compared with bare GC, indicating that PEDOT catalyzes the reduction of AuCl(4)(-) to Au.  相似文献   

20.
Diblock copolymers comprising a highly biocompatible poly(2-(methacryloyloxy)ethyl phosphorylcholine) (PMPC) block and a poly(2-(dimethylamino)ethyl methacrylate) (PDMA) block were evaluated for the synthesis of sterically stabilized gold nanoparticles in aqueous solution. The PDMA block becomes partially protonated on addition of HAuCl4, and the remaining nonprotonated tertiary amine groups reduce the AuCl4- counterion to zerovalent gold in situ. This approach results in the adsorption of the PDMA block onto the gold nanoparticle surface while the PMPC chains serve as a stabilizing block, producing highly biocompatible gold sols in aqueous solution at ambient temperature without any external reducing agent. The size and shape of gold nanoparticles could be readily controlled by tuning synthesis parameters such as the block composition and the relative and absolute concentrations of the PMPC-PDMA diblock copolymer and HAuCl4. These highly biocompatible gold sols have potential biomedical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号