首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A scattering-matrix method is formulated for the study of ballistic electron transport in a lateral quantum system. It is shown that the physically important and less localized states are allowed to dominate in the implementation of the formalism and, therefore, the method remains numerically stable. As an example of its application, the method has been used to study electron transport in both weakly and strongly modulated one-dimensional antidot arrays defined in a two-dimensional electron-gas (2DEG) constriction. For the arrays with a weak modulation, we show that the conductance bands can appear at the edges of the conductance plateaux of the 2DEG constriction. For the arrays with a strong modulation, a more complicated conductance structure has been found. The conductance at high Fermi energies is seen to be characterized by two kinds of fluctuations, namely slow and rapid fluctuations. The slow fluctuations result from wave interferences in a form of Bragg reflections, while the rapid fluctuations reflect the formation of electron minibands. However, due to strong overlaps between the minibands, regular miniband formation may only be observed in the low Fermi energy range.  相似文献   

2.
It is shown that a graphene ribbon, a ballistic strip of carbon monolayer, may serve as a quantum wire whose electronic properties can be continuously and reversibly controlled by an externally applied transverse voltage. The electron bands of armchair-edge ribbons undergo dramatic transformations: The Fermi surface fractures, Fermi velocity and effective mass change sign, and excitation gaps are reduced by the transverse field. These effects are manifest in the conductance plateaus, van Hove singularities, thermopower, and activated transport. The control over one-dimensional bands may help enhance effects of electron correlations, and be utilized in device applications.  相似文献   

3.
A generalized finite element formulation is proposed for the study of the spin-dependent ballistic transport of electron through the two-dimensional quantum structures with Rashba spin-orbit interactions (SOI). Thetransmission coefficient, conductance, the total and local polarization are numerically calculated and discussed as the Rashba coefficient, the geometric sizes, and incident energy are changed in the T-shaped devices. Some interesting features are found in the proper parameter regime. The polarization has an enhancement as the Rashba coefficient becomes stronger. The polarization valley is rigid in the regime of the conductance plateaus since the local interference among the polarized multi-wave modes. The Rashba interactions coupling to geometry in sizes could form the structure-induced Fano-Rashba resonance. In the wider stub, the localized spin lattice of electron could be produced. The conductance plateaus correspond to weakpolarizations. Strong polarizations appear when the stub sizes, incident energy, and the Rashba coupling coefficient are matched. The resonances are formed in a wide Fermi energy segment easily.  相似文献   

4.
Electronic transport in ferromagnetic ballistic conductors is predicted to exhibit ballistic anisotropic magnetoresistance-a change in the ballistic conductance with the direction of magnetization. This phenomenon originates from the effect of the spin-orbit interaction on the electronic band structure which leads to a change in the number of bands crossing the Fermi energy when the magnetization direction changes. We illustrate the significance of this phenomenon by performing ab initio calculations of the ballistic conductance in ferromagnetic Ni and Fe nanowires which display a sizable ballistic anisotropic magnetoresistance when magnetization changes direction from parallel to perpendicular to the wire axis.  相似文献   

5.
We study transport properties of clean FISIF double-barrier junctions consisting of metallic or semiconducting ferromagnets (F), a superconductor (S), and insulating interfaces (I). We solve the scattering problem based on the Bogoliubov–de Gennes equation and calculate differential conductance for arbitrary interface transparency, different effective band masses and Fermi wave vectors in the conductors. We analyze size and coherence effects that characterize ballistic transport: subgap transmission and geometrical oscillations of the conductance. We find that different band masses, as well as different Fermi wave vectors, affect the transport properties in a way similar to interfaces of a finite transparency. In all these cases, charge transport is reduced to resonant tunneling through the quasi-bound states in the superconducting film.  相似文献   

6.
We investigate the shot noise of electron transport through an Aharonov-Casher ring subject to the Rashba spin-orbit coupling (SOC). Analytic expressions for the coefficients of reflection and transmission are derived by using the Griffith boundary conditions. For this kind of SOC, the ballistic transport of electrons can be analyzed as two independent spin channels, and both of them have the same transmission and reflection coefficients. The dependences of shot noise and Landauer-Biittiker conductance on controllable factors, including the strength of Rashba SOC, the asymmetrical angle of lead-connection positions, the radius of the rings, and the wave vector (or energy) of the incident Fermi electrons, are explicitly described by some new combined parameters. The ways that the shot noise and conductance vary with Rashba SOC and with asymmetrical angle are demonstrated by numerical simulations, respectively. It is revealed that the shot noise reaches its maximum for the particular situation of half transmission and half reflection and zero shot noise occurs at conductance maxima.  相似文献   

7.
We show that four-terminal measurements of the differential conductance of field effect transistors (FETs) can provide important insights into the transport mechanism, and in particular can reveal the presence of ballistic transport. Measurements and simulations of purposely fabricated AlGaAs–GaAs heterostructure FETs show that ballistic transport results in a pronounced peak in the derivative of the differential conductance versus the gate voltage, which splits into two peaks with increasing drain-to-source voltage. Analyzing the four-probe conductance, ballistic electron transport through the channel is revealed as the origin of the observed peak splitting.  相似文献   

8.
A brief review is presented on some of the consequences of single electron transport in GaAs structures. Particular topics considered include noise and fluctuations in the ballistic regime where the quantised conductance imposes a limit on the magnitude of the random telegraphic signals and the consequences of single traps changing occupancy can be clearly observed. Results are also presented on the non-invasive detection of the Coulomb blockade and factors determining transport in the conductance minima are discussed. Thermo-electric effects in the blockade regime are discussed as these are complementary to studies of electrical transport and show that the thermopower oscillates about zero with a period corresponding to the removal of a single electron.  相似文献   

9.
It is shown that bending of a nanotube leads to splitting of the electron energy levels due to breaking of the azimuthal symmetry. The bent section of the nanotube acts as a scatterer for ballistic carriers, resulting in qualitative changes in the dependence of conductance on the Fermi energy.  相似文献   

10.
We calculate the mode-dependent transmission probability of massless Dirac fermions through an ideal strip of graphene (length L, width W, no impurities or defects) to obtain the conductance and shot noise as a function of Fermi energy. We find that the minimum conductivity of order e2/h at the Dirac point (when the electron and hole excitations are degenerate) is associated with a maximum of the Fano factor (the ratio of noise power and mean current). For short and wide graphene strips the Fano factor at the Dirac point equals 1/3, 3 times smaller than for a Poisson process. This is the same value as for a disordered metal, which is remarkable since the classical dynamics of the Dirac fermions is ballistic.  相似文献   

11.
管长和管径对单壁碳纳米管电导的影响   总被引:7,自引:0,他引:7       下载免费PDF全文
基于紧束缚模型,发展转移矩阵方法研究了单壁碳纳米管的导电性质.研究表明,由于卷曲效应,锯齿型(3k,0)管(k为整数)出现窄的电导沟,其大小与能隙一致.在费米能附近,电子输运不仅与管径和管长紧密相关,而且电子在不同能量下可能出现弹道的、扩散的和经典的三种不同输运特征. 关键词: 碳纳米管 转移矩阵 电导  相似文献   

12.
Time-resolved transport of ballistic electrons in a two-dimensional electron gas has been measured with a resolution of less than 5 ps. This was accomplished by using picosecond electrical pulses to launch electrons from the emitter of a transverse magnetic focusing structure and optoelectronically sampling the collector voltage. Both plasma resonances and the ballistic transport signal are clearly resolved. The transit time appears to be somewhat longer than expected from simple Fermi velocity considerations.  相似文献   

13.
We theoretically investigate the ballistic conductance of hollow quantum wires made of a two-dimensional electron gas occupying a cylindrical surface. The dependence of the conductance on the electron Fermi momentum differs drastically from the conventional case of a strip-like wire. We trace the evolution between these two cases in an exactly solvable model of a circular cylinder affected by a δ-like potential barrier along its element. We consider also a cylinder with two diametrically opposite δ-function barriers, the case representing somewhat realistic semiconductor structures. The general consequences of the boundary condition topology are also discussed.  相似文献   

14.
A direct signature of electron transport at the metallic surface of a topological insulator is the Aharonov-Bohm oscillation observed in a recent study of Bi2Se3 nanowires [Peng, Nature Mater. 9, 225 (2010)] where conductance was found to oscillate as a function of magnetic flux ? through the wire, with a period of one flux quantum ?0=h/e and maximum conductance at zero flux. This seemingly agrees neither with diffusive theory, which would predict a period of half a flux quantum, nor with ballistic theory, which in the simplest form predicts a period of ?0 but a minimum at zero flux due to a nontrivial Berry phase in topological insulators. We show how h/e and h/2e flux oscillations of the conductance depend on doping and disorder strength, provide a possible explanation for the experiments, and discuss further experiments that could verify the theory.  相似文献   

15.
We investigate a semiclassical conductance for ballistic open three-dimensional (3-d) billiards. For partially or completely broken-ergodic 3-d billiards such as SO(2) symmetric billiards, the dependence of the conductance on the Fermi wavenumber is dramatically changed by the lead orientation. Application of a symmetry-breaking weak magnetic field brings about mixed phase-space structures of 3-d billiards which ensures a novel Arnold diffusion that cannot be seen in 2-d billiards. In contrast to the 2-d case, the anomalous increment of the conductance should inevitably include a contribution arising from Arnold diffusion as well as a weak localization correction. Discussions are devoted to the physical condition for observing this phenomenon.  相似文献   

16.
Electrical conductance, including its normalized version, is discussed quantitatively in the context of the Fowler-Nordheim tunneling by considering ballistic electron transport through a generic insulating layer. This discussion is applicable to several nanostructures as, for example, nanowires as well as to specific problems in electron optics.  相似文献   

17.
余欣欣  谢月娥  欧阳滔  陈元平 《中国物理 B》2012,21(10):107202-107202
By the Green’s function method,we investigate spin transport properties of a zigzag graphene nanoribbon superlattice(ZGNS) under a ferromagnetic insulator and edge effect.The exchange splitting induced by the ferromagnetic insulator eliminates the spin degeneracy,which leads to spin-polarized transport in structure.Spin-dependent minibands and minigaps are exhibited in the conductance profile near the Fermi energy.The location and width of the miniband are associated with the geometry of the ZGNS.In the optimal structure,the spin-up and spin-down minibands can be separated completely near the Fermi energy.Therefore,a wide,perfect spin polarization with clear stepwise pattern is observed,i.e.,the perfect spin-polarized transport can be tuned from spin up to spin down by varying the electron energy.  相似文献   

18.
We describe our study of ballistic transport in nanostructures of lead telluride, PbTe. Submicron devices have been fabricated by electron beam lithography and chemical etching of 50 nm wide PbTe single quantum wells embedded between Pb0.92Eu0.08Te barriers grown by MBE on BaF2. The electron concentration in the devices was tuned by the gate voltage applied across an interfacial p–n junction. The most important observation was zero-magnetic field conductance quantization (in multiplies of 2e2/h) in narrow constrictions of dimensions comparable to electron mean free path calculated from transport mobility. This indicates considerable relaxation of requirements for quantum ballistic transport in comparison with other materials. We argue that the huge static dielectric constant of PbTe (0=1350 at 4.2 K) leads to suppression of the long-range Coulomb potentials of charged impurities and, thus, provides favorable conditions for the conductance quantization.  相似文献   

19.
While quantized conductance steps in short quantum wires are understood through a single electron picture, additional structure often observed in high-quality one-dimensional systems near g=0.7×(2e2/h) is commonly interpreted as arising due to many-body interactions. Most studies of conductance structure below 2e2/h use short one-dimensional wires where transport is known to be ballistic. We report transport measurements for both short (0.5 μm) and long (5 μm) quantum wires, and use both conductance and nonlinear transport to explore the behavior of one-dimensional wires.  相似文献   

20.
The magnetocrystalline anisotropy of thin magnetic wires of iron and cobalt is quite different from the bulk phases. The spin moment of monatomic Fe wire may be as high as 3.4 μB, while the orbital moment as high as 0.5 μB. The magnetocrystalline anisotropy energy (MAE) was calculated for wires up to 0.6 nm in diameter starting from monatomic wire and adding consecutive shells for thicker wires. I observe that Fe wires exhibit the change sign with the stress applied along the wire. It means that easy axis may change from the direction along the wire to perpendicular to the wire. We find that ballistic conductance of the wire depends on the direction of the applied magnetic field, i.e. shows anisotropic ballistic magnetoresistance. This effect occurs due to the symmetry dependence of the splitting of degenerate bands in the applied field which changes the number of bands crossing the Fermi level. We find that the ballistic conductance changes with applied stress. Even for thicker wires the ballistic conductance changes by factor 2 on moderate tensile stain in our 5×4 model wire. Thus, the ballistic conductance of magnetic wires changes in the applied field due to the magnetostriction. This effect can be observed as large anisotropic BMR in the experiment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号