首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The depolarized light scattered by glycerol at low temperature has been studied using a digital clipped correlator. The data are fitted to a Cole-Davidson distribution of relaxation times. Comparison of the polarized and depolarized spectra indicates that large step reorientational motions take place. This confirms the results obtained at higher temperature by Pinnow, Candau and Litovitz.  相似文献   

2.
Transient response of hot electrons in narrow-gap semiconductors to a step electric field in the presence of a longitudinal quantizing magnetic field has been studied at low temperatures using displaced Maxwellian distribution. The energy and momentum balance equations are used assuming acoustic phonon scattering via deformation potential responsible for the energy relaxation and elastic acoustic phonon scattering together with ionized impurity scattering for momentum relaxation. The calculations for the variation of drift velocity and electron temperature as functions of time are made for n-Hg0.8Cd0.2 Te in the extreme quantum limit at 1.5 K and 4.2 K. The momentum and energy relaxation times are found to be of the same order of magnitudes as with the experimental values. The magnetic field and lattice temperature dependences of the relaxation rates have been investigated.One of the authors, Suchandra Bhaumik, acknowledges the Council of Scientific and Industrial Research (New Delhi) for financial support.  相似文献   

3.
采用固相烧结法合成了单相巨介电常数氧化物CaCu3Ti4O12(CCTO).用阻抗分析仪分析了10—420 K温度范围内的介电频谱和阻抗谱特性,并结合ZVIEW软件进行了模拟.结果表明:温度高于室温时,频谱出现两个明显的弛豫台阶,低频弛豫介电常数随温度升高而显著增大,表现出热离子极化特点;温度低于室温时,频谱表现出类德拜弛豫,且高、低平台介电常数值基本不随温度变化,表现出界面极化特点和较好的温度稳定性.频谱中依次出现的介电弛豫对应于阻抗谱中 关键词: 3Ti4O12')" href="#">CaCu3Ti4O12 介电频谱 阻抗谱 Cole-Cole半圆弧  相似文献   

4.
Fluorine-19 spin-lattice relaxation of electron-beam-irradiated poly(tetrafluoroethylene) (PTFE) has been investigated in the temperature range from 250 to 315 K. As shown before, in the initial step, radicals are produced by the electron-beam irradiation and chain scission takes place. The concentrations of radicals and chain end groups after irradiation of PTFE strongly depend on the irradiation conditions. Radicals like other paramagnetic species decrease the spin-lattice relaxation times. In addition, decreased polymer chain lengths shift theT 1 minimum to lower temperatures. Tetrafluorosuccinic acid in solution was used as a model system and paramagnetic copper sulphate CuSO4 added to quantify the effect on the relaxation times. The shift of the minima inT 1 versus temperature in PTFE are compared with the chain length determined from high-resolution solid-state nuclear magnetic resonance spectra and with the concentration of paramagnetic species.  相似文献   

5.
H. W. Kammer 《Ionics》2018,24(12):3815-3826
Impedance spectra of linear and cross-linked poly(ethylene oxide) (PEO) are analyzed in a wide range of temperature. Dielectric responses differ at low and high temperature due to tendency of PEO to crystallization below melting temperature. Extent of crystallization depends on cross-linking density. The network in PEO with high cross-linking density is rigid and morphology transition shifts to very low temperature. Debye-like relaxation appears at low temperature similar as in ionic liquids. Onset of polarization relaxation shifts to higher temperature with increasing mesh size that is coupling of electric and structural relaxation appears. This is also nicely reflected by scaled conductivity. It demonstrates that the structure in cross-linked systems is a superposition of chemical and physical networks. They relax separately at low temperature and frequency under condition of sufficient rigidity.  相似文献   

6.
The temperature dependence of the vibrational relaxation of a flexible model of triiodide in a Lennard-Jones solvent (xenon) has been studied using equilibrium molecular dynamics simulations. The internal dynamics of the ion is calculated from a previously published semi-empirical valence bond model with a limited number of basis states. Vibrational decorrelation rates of the symmetric and antisymmetric stretching modes were found from the time correlation functions of the normal coordinate velocities and the vibrational energy relaxation rates from the time correlation functions of the kinetic energy in each mode. The vibrational dephasing rates and the energy relaxation rates decrease slowly as the temperature is lowered and do not show a discontinuity when the fluid solidifies, although the reorientational diffusion rates change rapidly at low temperatures. In order to interpret the results, perturbation theory expressions for the relaxation rates were evaluated for simulations of a rigid model of the ion and found to agree well with the direct observations. These showed that, unusually, both the solvent force and its derivative, the solvent potential curvature, contribute to the dephasing of the symmetric mode. The relevant fluctuation correlation times are very short, which may explain the insensitivity of the vibrational relaxation to the state of the solvent.  相似文献   

7.
Experimental results on frequency and temperature dependence of ac conduction in boron doped amorphous carbon films are analyzed in the framework of available microscopic models. Depending on the response, the conductivity plot is divided into three regimes (low frequency high temperature; moderate frequency intermediate temperature; high frequency low temperature) and the data in the respective regimes are corroborated with the various theoretical models accordingly. The conductivity data at high frequency and low temperature suggests that relaxation via quantum mechanical tunneling might be the dominant conduction mechanism. At intermediate temperatures and moderate frequencies, the conductivity data is in good agreement with extended pair approximation model with interaction correction. Signature of enhanced interaction effect is observed at low temperature.  相似文献   

8.
We use molecular dynamics computer simulations to investigate the relaxation dynamics of a simple model for a colloidal gel at a low volume fraction. We find that due to the presence of the open spanning network this dynamics shows at low temperature a nontrivial dependence on the wave vector which is very different from the one observed in dense glass-forming liquids. At high wave vectors the relaxation is due to the fast cooperative motion of the branches of the gel network, whereas at low wave vectors the overall rearrangements of the heterogeneous structure produce the relaxation process.  相似文献   

9.
Changing shapes in the nanoworld   总被引:1,自引:0,他引:1  
What are the mechanisms leading to the shape relaxation of three-dimensional crystallites? Kinetic Monte Carlo simulations of fcc clusters show that the usual theories of equilibration, via atomic surface diffusion driven by curvature, are verified only at high temperatures. Below the roughening temperature, the relaxation is much slower, kinetics being governed by the nucleation of a critical germ on a facet. We show that the energy barrier for this step linearly increases with the size of the crystallite, leading to an exponential dependence of the relaxation time.  相似文献   

10.
The photoconductivity kinetics in PbTe(Ga) epitaxial films prepared by the hot-wall method is studied. The recombination of nonequilibrium photoexcited electrons at low temperatures was found to proceed in two stages, with a period of relatively fast relaxation followed by delayed photoconductivity. The temperature at which delayed photoconductivity appears increases with decreasing film thickness. The relaxation rate over the period of fast relaxation depends on film thickness and is the lowest in the thinnest layers. In semi-insulating films, photoconductivity is always positive, whereas in samples with lower electrical resistivity positive and negative photoconductivities are observed to coexist. The data obtained are discussed in terms of a model in which the impurity gallium atom can be in more than one charged state.  相似文献   

11.
A vitreous state is originally nonequilibrium. Because of this, attempts to classify relaxation processes in glasses as equilibrium and nonequilibrium are, strictly speaking, incorrect. This classification is, however, possible and useful at low temperatures when the model of two-level systems (TLS) appears to be sufficient to describe properties of glasses. Until now, the question of the applicability limits of the TLS model has remained unclear both in the temperature and temporal domains. A number of deviations from the so-called standard TLS model, observed experimentally, can be easily accounted for with allowance for nonequilibrium effects considered as a result of the nonequilibrium state of the TLS ensemble. There are some effects, however, that cannot be consistently explained within the framework of the TLS model. In this paper, we briefly consider the results of studying the relaxation processes in organic glasses at low temperatures in a wide time range using the spectral hole-burning technique. The experimental data are compared with predictions of the TLS model, and spectral criteria for the limits of its applicability are proposed.  相似文献   

12.
The seven-equation model for two-phase flows is a full non-equilibrium model, each phase has its own pressure, velocity, temperature, etc. A single value for each property, an equilibrium value, can be achieved by relaxation methods. This model has better features than other reduced models of equilibrium pressure for the numerical approximations in the presence of non-conservative terms. In this paper we modify this model to include the heat and mass transfer. We insert the heat and mass transfer through temperature and Gibbs free energy relaxation effects. New relaxation terms are modeled and new procedures for the instantaneous temperature and Gibbs free energy relaxation toward equilibrium is proposed. For modeling such relaxation terms, our idea is to make use of the assumptions that the mechanical properties, the pressure and the velocity, relax much faster than the thermal properties, the temperature and the Gibbs free energy, and the ratio of the Gibbs free energy relaxation time to the temperature relaxation time is extremely high. All relaxation processes are assumed to be instantaneous, i.e. the relaxation times are very close to zero. The temperature and the Gibbs free energy relaxation are used only at the interfaces. By these modifications we get a new model which is able to deal with transition fronts, evaporation fronts, where heat and mass transfer occur. These fronts appear as extra waves in the system. We use the same test problems on metastable liquids as in Saurel et al. [R. Saurel, F. Petitpas, R. Abgrall, Modeling phase transition in metastable liquids: application to cavitating and flashing flows, J. Fluid Mech. 607 (2008) 313–350]. We have almost similar results. Computed results are compared to the experimental ones of Simões-Moreira and Shepherd [J.R. Simões-Moreira, J.E. Shepherd, Evaporation waves in superheated dodecane, J. Fluid Mech. 382 (1999) 63–86]. A reasonable agreement is achieved. In addition we consider the six-equation model with a single velocity which is obtained from the seven-equation model in the asymptotic limit of zero velocity relaxation time. The same procedure for the heat and mass transfer is used with the six-equation model and a comparison is made between the results of this model with the results of the seven-equation model.  相似文献   

13.
The longitudinal relaxation time of Spin-Flip Raman scattering (SFRS) in n-CdS is explained in terms of the Elliott mechanism. The energy dispersion of spectroscopic factors of the conduction electrons and the Hasegawa model yield a transversal relaxation time different from the longitudinal relaxation time, but do not reproduce the experimental value. The diffusion coefficient, responsible for the SFRS line width behavior with temperature in n-CdS, is explained based upon hopping effects in the low temperature region.  相似文献   

14.
In part I (1965, Adv. Phys., 14, 101), a theory was developed which treated the thermodynamics of dielectric and anelastic relaxation due to point defects in crystals from the viewpoint of the point symmetry of the defect as well as of the crystal. In the present paper this theory is extended to treat the kinetics of relaxation. Equations are derived which express the relaxation times of electrically and stress active modes of relaxation in terms of the rates of reorientation between one particular defect orientation and all of the other equivalent configurations. Explicit expressions are then given for these relaxation times for commonly occurring crystal and defect symmetries. The reorientation frequencies which appear in these expressions may be converted into the appropriate atom or ion jump rates; this final step can generally be carried out merely by inspection of the crystal model. The possibility that two or more relaxations due to a given point defect may be widely separated on a frequency or temperature scale (a situation which is called a ‘frozen-free split’), and the anomalies connected with such behaviour, are discussed. Finally, various examples which have been studied in the literature, of relaxations due to point defects, are reviewed in the framework of the present theory.  相似文献   

15.
叶振强  曹炳阳  过增元 《物理学报》2014,63(15):154704-154704
声子是石墨烯导热过程中的主要载体,而声子的弛豫时间又是其中最基本、最重要的物理量.本文采用简正模式分解法研究了石墨烯声子的弛豫时间,并且借此分析了不同声子在导热过程中的贡献.该方法通过平衡分子动力学模拟实现,首先通过模拟得到单个声子的能量自相关函数衰减曲线,并进一步采用拟合和积分两种方法得到单个声子的弛豫时间.然后,研究了弛豫时间与波矢、频率和温度的关系.结果发现,弛豫时间随波矢的变化与对应的色散关系相近,弛豫时间与频率和温度的关系符合理论模型:1/τ=νnTm,其中声学支的n为1.56,而光学支结果较为发散,指数m对于不同声子支结果略有不同.最后,还研究了不同频率声子对导热的贡献,发现低频声子在态密度上占有绝对优势,并且其弛豫时间整体高于高频声子,所以低频声子对导热的贡献占据主导地位.  相似文献   

16.
We calculate the NMR relaxation rate due to quadrupolar coupling of the nucleus to a local, strongly anharmonic phonon mode. As a model potential for a “rattling” motion we consider a square-well potential. We calculate the free phonon Green's function analytically and derive the low and high temperature limits of the NMR relaxation rate. It is shown that the temperature dependence of the NMR relaxation rate possesses a peak in contrast to harmonic phonons but in qualitative agreement with a recent NMR study on KOs2O6. We discuss the influence of phonon renormalization due to electron-phonon interaction.  相似文献   

17.
The paper describes the underlying principles and discusses the most important advantages and limitations of the experimental technique of magnetically affected reaction yield spectroscopy as developed in the authors’ laboratory and guides the reader step by step through a typical experimental sequence using as example the problem of short-lived radical cations of a series of methyl-substituted benzenes in X-irradiated nonpolar solutions. For two of the eight target substances — benzene itself and mesithylene — the paper reports the first unequivocal observation of their radical cations in liquid alkane solution at room temperature and provides a lower estimate of about 10 ns for their relaxation times in low magnetic field.  相似文献   

18.
Recent NMR experiments by Singer et al. [Singer, Phys. Rev. Lett. 95, 236403 (2005).] showed a deviation from Fermi-liquid behavior in carbon nanotubes with an energy gap evident at low temperatures. Here, a comprehensive theory for the magnetic field and temperature dependent NMR 13C spin-lattice relaxation is given in the framework of the Tomonaga-Luttinger liquid. The low temperature properties are governed by a gapped relaxation due to a spin gap ( approximately 30 K), which crosses over smoothly to the Luttinger liquid behavior with increasing temperature.  相似文献   

19.
The magnetic relaxation of a Nb film covered with a random array of permalloy particles has been studied using various procedures. When the sample undergoes a field-cooled process, the magnetic relaxation becomes logarithmic in time. The relaxation rate is nearly temperature independent at low temperature and characteristic glassy dynamics-aging and memory effects-are observed. These results are interpreted as the consequence of pinning by the statistical variation of the number of nanoparticles within the area of a vortex core.  相似文献   

20.
Heterometallic molecular chromium wheels are fascinating new magnetic materials. We reexamine the available experimental susceptibility data on MCr7 wheels in terms of a simple isotropic Heisenberg Hamiltonian for M=Fe, Ni, Cu, and Zn and find in that FeCr7 needs to be described with an iron–chromium exchange that is different from all other cases. In a second step we model the behavior of the proton spin lattice relaxation rate as a function of applied magnetic field for low temperatures as it is measured in nuclear magnetic resonance (NMR) experiments. It appears that CuCr7 and NiCr7 show an unexpectedly reduced relaxation rate at certain level crossings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号