首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phase structures of polypropylene (PP)/polystyrene (PS) blends, in situ compatiblized by a Friedel–Crafts alkylation reaction with anhydrous aluminum chloride (AlCl3) as a catalyst, were investigated by small angle light scattering (SALS). The invariant Q, the content of compatible domain between the two phases, i.e., the interphase volume fraction, and the interphase thickness of the in situ compatiblized binary polymer blends were determined by Rayleigh scattering, as well as the phase structure parameters, such as correlation distance and average chord lengths. The results showed that the obtained blend is a partially compatible system. The invariant Q, the interphase volume fraction, and the interphase thickness all can be used to characterize the in situ interfacial compatiblization of the blends and all showed a nonlinear dependence on the in situ formed copolymer content. Further investigations revealed that the contribution of the interfacial modification to the zero shear viscosity of the in situ compatiblized blends showed exponential decay with the increasing invariant Q and showed exponential growth with the increasing volume fraction and thickness of the interphase in the blends. The nonlinear relations between the three phase structure parameters and the in situ formed copolymer content, as well as the nonlinear relations between the three phase structure parameters and the contribution of the interfacial modification to the zero shear viscosity of the blends, might be closely related to the in situ formation of the copolymer and its effect at the interfacial surface in the blends.  相似文献   

2.
The development of a dedicated small‐angle X‐ray scattering setup for the investigation of complex fluids at different controlled shear conditions is reported. The setup utilizes a microfluidics chip with a narrowing channel. As a consequence, a shear gradient is generated within the channel and the effect of shear rate on structure and interactions is mapped spatially. In a first experiment small‐angle X‐ray scattering is utilized to investigate highly concentrated protein solutions up to a shear rate of 300000 s?1. These data demonstrate that equilibrium clusters of lysozyme are destabilized at high shear rates.  相似文献   

3.
We report on the nonlinear rheology of a reversible supramolecular polymer based on hydrogen bonding. The coupling between the flow-induced chain alignment and breakage and recombination of bonds between monomers leads to a very unusual flow behavior. Measured velocity profiles indicate three different shear-banding regimes upon increasing shear rate, each with different characteristics. While the first of these regimes has features of a mechanical instability, the second shear-banding regime is related to a shear-induced phase separation and the appearance of birefringent textures. The shear-induced phase itself becomes unstable at very high shear rates, giving rise to a third banding regime.  相似文献   

4.
We report an elastic instability associated with flow-induced clustering in semidilute non-Brownian colloidal nanotubes. Rheo-optical measurements are compared with simulations of mechanical flocculation in sheared fiber suspensions, and the evolving structure is characterized as a function of confinement and shear stress. The transient rheology is correlated with the evolution of highly elastic vorticity-aligned aggregates, with the underlying instability being somewhat ubiquitous in complex fluids.  相似文献   

5.
We have studied theoretically the electron-phonon scattering rates in GaAs/AlAs quantum wells which have additional thin AlAs layers in them using the dielectric continuum approach for the phonons. The confined and interface phonon modes and the intersubband electron phonon scattering rates of these structures have been calculated. The system with an additional AlAs layer is found to have intersubband electron scattering rates which are increased modestly as compared to those for the corresponding quantum well. These results show that scattering rates in general are expected to depend only weakly on the effects of system structure on the optical phonon spectra.  相似文献   

6.
An improved penalty immersed boundary method (pIBM) has been proposed for simulation of flow-induced deformation of three-dimensional (3D) elastic capsules. The motion of the capsule membrane is described in the Lagrangian coordinates. The membrane deformation takes account of the bending and twisting effects as well as the stretching and shearing effects. The method of subdivision surfaces is adopted to generate the mesh of membrane and the corresponding shape functions, which are required to be C1 continuous. The membrane motion is then solved by the subdivision-surface based finite element method on the triangular unstructured mesh. On the other hand, the fluid motion is defined on the Eulerian domain, and is advanced by the fractional step method on a staggered Cartesian grid. Coupling of the fluid motion and the membrane motion is realized in the framework of the pIBM. Using the proposed method, deformation of 3D elastic capsules in a linear shear flow is studied in detail, and validations are examined by comparing with previous studies. Both the neo-Hookean membrane and the Skalak membrane are tested. For an initially spherical capsule the tank-treading motion is formed under various dimensionless shear rates and reduced bending moduli. It is found that buckling occurs near the equator of the capsule for small shear rates but near the tips for large shear rates, which is suppressed by including the bending rigidity of the membrane. Effects of the Reynolds number and the membrane density are investigated for an initially spherical capsule. For a non-spherical capsule, with the initial shape of the oblate spheroid or the biconcave circular disk as a model of the red blood cell, the swinging motion is observed due to the shape memory effect. By decreasing the dimensionless shear rate or increasing the reduced bending modulus, the swinging motion is transited into the tumbling motion.  相似文献   

7.
Droplet deformation and alignment are achieved in holographic polymer-dispersed liquid-crystal reflection gratings by applying an in situ shear during recording. High diffraction efficiency (99%) is obtained for light polarized parallel to the shear, with nearly zero efficiency for perpendicular polarization, and no increase of incoherent scattering. Permanent polarization dependence is related to stress-induced morphology changes of liquid-crystal droplets that are frozen by polymerization. The system is studied by electron microscopy and modeled by anisotropic coupled-wave and scattering theory. The morphology is consistent with the theory of small deformations of liquid droplets in fluid flow. Diffraction efficiency measurements are in agreement with theory incorporating this morphology as well as concomitant orientation and alignment of liquid-crystal molecules.  相似文献   

8.
X-ray Photon Correlation Spectroscopy was used to measure the diffusive dynamics of colloidal particles in a shear flow. The results presented here show how the intensity autocorrelation functions measure both the diffusive dynamics of the particles and their flow-induced, convective motion. However, in the limit of low flow/shear rates, it is possible to obtain the diffusive component of the dynamics, which makes the method suitable for the study of the dynamical properties of a large class of complex soft-matter and biological fluids. An important benefit of this experimental strategy over more traditional X-ray methods is the minimization of X-ray-induced beam damage. While the method can be applied also for photon correlation spectroscopy in the visible domain, our analysis shows that the experimental conditions under which it is possible to measure the diffusive dynamics are easier to achieve at higher q values (with X-rays).  相似文献   

9.
通过数值仿真揭示了开口前缘垂直注入质量流和前壁面平行注入质量流抑制流激孔腔噪声的机制,研究了多参数影响下脉动压力峰值降噪量和总降噪量随质量流注入速度的变化规律。开口前缘垂直注入质量流通过抬升剪切层,避免漩涡冲击开口后缘,抑制流激孔腔噪声脉动压力峰值;在一定范围内质量流注入速度越大,脉动压力峰值降噪量越大,但是低频部分引起的抬升也会越高,导致总降噪量先增大后减小;经优化后的峰值降噪量和总降噪量分别可以达到15 dB和9.5 dB。开口前壁面平行注入质量流则是通过加强开口处剪切层的稳定性,避免发生漩涡脱落,达到抑制流激孔腔噪声的目的;当质量流入口面积大于孔腔开口前壁面积2/3时,不仅可以显著降低流激孔腔噪声脉动压力的峰值,并且可以很好地抑制其它频段噪声的抬升;质量流注入速度为来流速度的0.5倍时,脉动压力峰值降噪量和总降噪量分别可以达到18 dB和15.4 dB。  相似文献   

10.
建立了Selkov模型中间反应物具有不同扩散和不同流速条件下的反应 扩散 流动方程 ,理论分析了非Turing不稳定形成的条件 ,求得其参数区间 ,对Andresen的结论作了拓展 .研究还发现 ,在振荡Hopf区域之外 ,静止波动 (空间周期结构FDS)仍然可以存在 .因而 ,此结构存在的参数空间大于Andresen的结果 .同时 ,还将此种不稳定参数区间与Turing不稳定和差速流动引起不稳定 (DIFI)的结果进行了比较 ,结果发现静态FDS值总是处于DIFI临界曲线相应的最小值之上 ,这表明动力学机制是由DIFI不稳定造成的 ,DIFI不稳定区是产生静止波FDS不稳定结构的必要条件  相似文献   

11.
Using molecular dynamics simulations, we show that a simple model of a glassy material exhibits the shear localization phenomenon observed in many complex fluids. At low shear rates, the system separates into a fluidized shear band and an unsheared part. The two bands are characterized by a very different dynamics probed by a local intermediate scattering function. Furthermore, a stick-slip motion is observed at very small shear rates. Our results, which open the possibility of exploring complex rheological behavior using simulations, are compared to recent experiments on various soft glasses.  相似文献   

12.
We study a simple model of shear banding in which the flow-induced phase is destabilized by coupling between flow and microstructure (wormlike micellar length). By varying the strength of instability and the applied shear rate, we find a rich variety of oscillatory and chaotic shear banded flows. At low shear and weak instability, the induced phase pulsates next to one wall of the flow cell. For stronger instability, high shear pulses ricochet across the cell. At high shear we see oscillating bands on either side of central defects. We discuss our results in the context of recent experiments.  相似文献   

13.
《Physica A》1988,149(3):406-431
The behavior of a dense two-dimensional soft disc liquid under shear is studied via nonequilibrium molecular dynamics. The structure factor for the liquid at a given shear rate is evaluated directly by plotting the particle positions, taken at random from the NEMD simulation at that shear, onto photographic film and using light scattering to obtain a diffraction pattern. The pair correlation function of this system is also extracted directly by histogramming the particle positions with respect to a given central particle as a function of separation and angle. The pair correlation function is compared to that approximated by a Fourier series expansion to rank ten. Results are reported as a function of shear rate from a shear rate of 0.1 (when the fluid is essentially Newtonian) to 10 (when the fluid can display a string phase). The appearance of the string phase is discussed and shown to be a consequence of the definition of temperature in the simulation algorithm. A modification of the algorithm is proposed. Comparisons between this work and previous work with three-dimensional liquids are given. The two-dimensional structure factor is compared with that obtained from a real colloidal suspension via light scattering.  相似文献   

14.
The phase behavior and phase separation dynamics of a PS/PVME/SAN ternary blend using light scattering under a shear rate range of 0.1~40 s?1 were investigated. The cloud point temperature first increases and then decreases with the increase of shear rates. At higher shear rates, the cloud point temperature again increases. The phase separation behavior in the early and later stages under shear field can be explained by the Cahn–Hilliard theory and the exponential growth law, respectively. The delay time τ d ?, the apparent diffusion coefficient D app, the growth rate R(q), and the exponent term show strong dependence on the difference between the experimental temperature and the cloud point temperature (ΔT), and on the shear rates. Compared with PS/PVME binary blends at lower shear rates, τ d for a PS/PVME/SAN ternary blend is smaller, while at higher shear rates τ d is larger. At higher shear rates, the introduction of the third component SAN to a PS/PVME binary blends slows the phase separation process.  相似文献   

15.
The flow-induced vibration characteristics of anisotropic laminated cylindrical shells partially or completely filled with liquid or subjected to a flowing fluid are studied in this work for two cases of circumferential wave number, the axisymmetric, where n=0 and the beam-like, where n=1. The shear deformation effects are taken into account in this theory; therefore, the equations of motion are determined with displacements and transverse shear as independent variables. The present method is a combination of finite element analysis and refined shell theory in which the displacement functions are derived from the exact solution of refined shell equations based on orthogonal curvilinear co-ordinates. Mass and stiffness matrices are determined by precise analytical integration. A finite element is defined for the liquid in cases of potential flow that yields three forces (inertial, centrifugal and Coriolis) of moving fluid. The mass, stiffness and damping matrices due to the fluid effect are obtained by an analytical integration of the fluid pressure over the liquid element. The available solution based on Sanders' theory can also be obtained from the present theory in the limiting case of infinite stiffness in transverse shear. The natural frequencies of isotropic and anisotropic cylindrical shells that are empty, partially or completely filled with liquid as well as subjected to a flowing fluid, are given. When these results are compared with corresponding results obtained using existing theories, very good agreement is obtained.  相似文献   

16.
A new sharp-interface immersed boundary method based approach for the computation of low-Mach number flow-induced sound around complex geometries is described. The underlying approach is based on a hydrodynamic/acoustic splitting technique where the incompressible flow is first computed using a second-order accurate immersed boundary solver. This is followed by the computation of sound using the linearized perturbed compressible equations (LPCE). The primary contribution of the current work is the development of a versatile, high-order accurate immersed boundary method for solving the LPCE in complex domains. This new method applies the boundary condition on the immersed boundary to a high-order by combining the ghost-cell approach with a weighted least-squares error method based on a high-order approximating polynomial. The method is validated for canonical acoustic wave scattering and flow-induced noise problems. Applications of this technique to relatively complex cases of practical interest are also presented.  相似文献   

17.
Creep experiments on polycrystalline surfactant hexagonal columnar phases show a power law regime, followed by a drastic fluidization before reaching a final stationary flow. The scaling of the fluidization time with the shear modulus of the sample and stress applied suggests that the onset of flow involves a bulk reorganization of the material. This is confirmed by x-ray scattering under stress coupled to in situ rheology experiments, which show a collective reorientation of all crystallites at the onset of flow. The analogy with the fracture of heterogeneous materials is discussed.  相似文献   

18.
We investigate the vortex state in a two-band superconductor with strong intraband and weak interband electronic scattering rates. Coupled Usadel equations are solved numerically, and the distributions of the pair potentials and local densities of states are calculated for two bands at different values of magnetic fields. The existence of two distinct length scales corresponding to different bands is demonstrated. The results provide qualitative interpretation of recent scanning tunneling microscopy experiments on vortex structure imaging in MgB2.  相似文献   

19.
《Physica A》2006,365(1):190-196
The formula for probability density functions (PDFs) has been extended to include PDF for energy dissipation rates in addition to other PDFs such as for velocity fluctuations, velocity derivatives, fluid particle accelerations, energy transfer rates, etc., and it is shown that the formula actually explains various PDFs extracted from direct numerical simulations and experiments performed in a wind tunnel. It is also shown that the formula with appropriate zooming increment corresponding to experimental situation gives a new route to obtain the scaling exponents of velocity structure function, including intermittency exponent, out of PDFs of velocity fluctuations.  相似文献   

20.
Using confocal microscopy, we directly observe that simple shear flow induces transient crystallization of colloids by wall-normal propagation of crystallization fronts from each shearing surface. The initial rate of the front propagation was 1.75±0.07 colloidal layers per unit of applied strain. The rate slowed to 0.29±0.04 colloidal layers per unit of applied strain as the two fronts approached each other at the midplane. The retardation of the front propagation is caused by self-concentration of shear strain in the growing bands of the lower-viscosity crystal, an effect that leads to a progressive reduction of the shear rate in the remaining amorphous material. These findings differ significantly from previous hypotheses for flow-induced colloidal crystallization by homogeneous mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号