首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Energy transfer between fluorescent dyes in photonic crystals   总被引:1,自引:0,他引:1  
Yang Z  Zhou X  Huang X  Zhou J  Yang G  Xie Q  Sun L  Li B 《Optics letters》2008,33(17):1963-1965
Energy transfer from fluorescein (Fl) to Rhodamine B (RhB) in the opal photonic crystals has been investigated by photoluminescence. The results show that the energy transfer can be enhanced effectively by photonic bandgaps. When the fluorescence emission wavelength of donor Fl overlaps the photonic bandgap the fluorescence intensity of the donor is suppressed, while the fluorescence intensity of acceptor RhB is obviously enhanced. This enhancement can be attributed to the inhibition of radiative emission of the donor in the photonic crystals.  相似文献   

2.
Yihang Chen 《Physics letters. A》2011,375(7):1156-1159
Broadband wave plates working in subwavelength scale are realized by one-dimensional photonic crystals containing negative-index materials. It is demonstrated that the phase shift of reflected wave as a function of frequency changes smoothly within the stop band of the photonic crystal, while it changes sharply within the pass band. In the stop band, the difference between the phase of TE and that of TM reflected wave could remain constant in a rather wide frequency range. These properties are useful for designing compact wave plates or phase retarders which can be used in broad spectral bandwidth.  相似文献   

3.
In real photonic crystals light is scattered by the imperfections of the periodic potential. We study experimentally the propagation of diffused light in silicon inverse opals and report an exceptionally reduced diffusion constant of 3.0+/-0.7 m(2)/s, in samples which are only partially disordered. Waves scattered both by the lattice planes and by their imperfections interfere and light is efficiently trapped in this hybrid scattering regime. Not only higher quality crystals, but also random materials present an order of magnitude bigger diffusion constant and hence weaker scattering.  相似文献   

4.
5.
Velocity fluctuations in a fluidized suspension of particles are investigated using two new ultrasonic correlation spectroscopies: diffusing acoustic wave spectroscopy and dynamic sound scattering. These techniques probe both the local strain rate and rms velocity of the particles, providing important information about the spatial extent of velocity correlations. Our results demonstrate the power of these techniques to probe particle dynamics of fluidized suspensions, and suggest that the velocity correlations are essentially independent of Reynolds numbers for Re(p)<1.  相似文献   

6.
Photonic crystals with tunable D-surface structures for possible high-temperature gas- and temperature-sensing applications were prepared by a biotemplating method. This included infiltrating colored scales of the beetle Entimus imperialis with an organopolysiloxane mixture followed by simultaneous combustion of the template and calcination of the cured organopolysiloxane. A high-yield inorganic silica-based replica of the original structure was obtained, which is capable of withstanding temperatures up to 600 °C. Light- and scanning electron microscopy combined with focused ion beam milling showed a precise replication of the whole scales and their internal D-surface structure. Fourier-transform infrared spectroscopy and X-ray diffraction analysis confirmed the complete curing of the organopolysiloxanes and their transformation into amorphous silica during calcination. The dielectric constant of the manufactured materials determined by Abbé refractometry was ? = 2.3180 and used to perform band structure calculations utilizing the plane wave expansion method. By changing the chain length and degree of crosslinking of the organopolysiloxane precursor mixture, the lattice parameters and filling factors, and therefore the photonic properties of the replicas, could be tuned.  相似文献   

7.
Qiaofen Zhu  Dayong Wang 《Optik》2011,122(4):330-332
The photonic band gaps in one-dimensional photonic crystals (PCs) are theoretically investigated. A new method to broaden the photonic band gaps is introduced. Based on the similar method, a kind of photonic crystals is constructed to generate photonic band gaps with proportioned central frequencies. This technology can be used for designing nonlinear PCs for harmonic generation.  相似文献   

8.
Arbitrary-lattice photonic crystals created by multiphoton microfabrication   总被引:12,自引:0,他引:12  
We used voxels of an intensely modified refractive index generated by multiphoton absorption at the focus of femtosecond laser pulses in Ge-doped silica as photonic atoms to build photonic lattices. The voxels were spatially organized in the same way as atoms arrayed in actual crystals, and a Bragg-like diffraction from the photonic atoms was evidenced by a photonic bandgap (PBG) effect. Postfabrication annealing was found to be essential for reducing random scattering and therefore enhancing PBG. This technique has an intrinsic capability of individually addressing single atoms. Therefore the introduction of defect structures was much facilitated, making the technique quite appealing for photonic research and applications.  相似文献   

9.
A method is proposed for extending photonic band gaps by constructing periodic structures from two or more consecutively located photonic crystals with different lattice constants or filling factors. The photonic band gaps with a maximum extension are predicted by superposing the photonic band gap maps on one another. It is demonstrated that both the lowest and higher order band gaps can be merged in photonic crystals with a high refractive index contrast.  相似文献   

10.
Slow light in photonic crystals   总被引:3,自引:0,他引:3  
The problem of slowing down light by orders of magnitude has been extensively discussed in the literature. Such a possibility can be useful in a variety of optical and microwave applications. Many qualitatively different approaches have been explored. Here we discuss how this goal can be achieved in linear dispersive media, such as photonic crystals. The existence of slowly propagating electromagnetic waves in photonic crystals is quite obvious and well known. The main problem, though, has been how to convert the input radiation into the slow mode without losing a significant portion of the incident light energy to absorption, reflection, etc. We show that the so-called frozen mode regime offers a unique solution to the above problem. Under the frozen mode regime, the incident light enters the photonic crystal with little reflection and, subsequently, is completely converted into the frozen mode with huge amplitude and almost zero group velocity. The linearity of the above effect allows the slowing of light regardless of its intensity. An additional advantage of photonic crystals over other methods of slowing down light is that photonic crystals can preserve both time and space coherence of the input electromagnetic wave.  相似文献   

11.
The dynamics of a photonic wavepacket in the effective oscillator potential is studied. The oscillator potential is constructed on the base of one-dimensional photonic crystal with a period of unit cell adiabatically varied in space. The structure has a locally equidistant discrete spectrum. This leads to an echo effect, i.e., the periodical reconstruction of the packet shape. The effect can be observed in the nonlinear response of the system. Numerical estimations for porous-silicon based structures are presented for a femtosecond Ti:sapphire laser pump. The text was submitted by the authors in English.  相似文献   

12.
光子晶体对光具有独特的局域、反射、传导、分束、耦合、调制、慢光等操纵能力,使其成为微/纳光电集成的重要材料之一。介绍了光子晶体的几种重要物理特性——带隙特性、慢光特性、自准直和负折射特性,叙述了光子晶体集成器件方面所取得的最新进展,对光子晶体器件的发展动向做了展望。  相似文献   

13.
Using the optical response formula for photonic crystals and the Bloch equations, we analyze coherent emission in arbitrary two-dimensional photonic crystals. The transient emission depends not only on the photon density of the states, but also on the intensity and duration of the pump laser pulses. A transient gain exists if the pump pulse area is a certain value and the transition frequency is tuned to the band edge. The sharp structure of the density of states near the band edge leads to a dramatic enhancement of the transient emission intensity and an abrupt change in the oscillation of the emission field. PACS 42.70.Qs; 32.80.-t; 42.25.Bs  相似文献   

14.
Negative refraction in photonic crystals   总被引:4,自引:0,他引:4  
We demonstrate that light propagation in strongly modulated 2D/3D photonic crystals (PhCs) becomes refraction-like in the vicinity of the photonic bandgap, which is contrary to the fact that light propagation in weakly modulated PhCs is very different from refraction and thus the definition of refraction index becomes meaningless. Such a crystal behaves like a material having an effective refractive index controllable by the band structure. This situation is analogous to the effective-mass approximation in electron-band theory. The propagation states having a negative effective index exhibit unusual properties, such as mirror-like imaging effect, image-transfer effect. These properties are confirmed by finite-difference time-domain simulations.  相似文献   

15.
We propose a method for entangling a system of two-level atoms in photonic crystals. The atoms are assumed to move in void regions of a photonic crystal. The interaction between the atoms is mediated either via a defect mode or via a resonant dipole-dipole interaction. We show that these interactions can produce pure entangled atomic states. We analyze the problem with parameters typical for currently existing photonic crystals and Rydberg atoms and we show that the atoms can emerge from photonic crystals in entangled states. Depending on the linear dimensions of the crystal we estimate that a pair of atoms entangled in a photonic crystal can be separated by tens of centimeters. Receive 11 June 1999 and Received in final form 4 October 1999  相似文献   

16.
Wang G  Huang JP  Yu KW 《Optics letters》2008,33(19):2200-2202
We exploit theoretically the occurrence and tunability of photonic Bloch oscillations (PBOs) in one-dimensional photonic crystals (PCs) containing nonlinear composites. Because of the enhanced third-order nonlinearity (Kerr-type nonlinearity) of composites, photons undergo oscillations inside tilted photonic bands, which are achieved by the application of graded external-pump electric fields on such PCs, varying along the direction perpendicular to the surface of layers. The tunability of PBOs (including amplitude and period) is readily achieved by changing the field gradient. With an appropriate graded pump ac or dc electric field, terahertz PBOs can appear and cover a terahertz band in an electromagnetic spectrum.  相似文献   

17.
18.
19.
To make a device from an opal—or otherwise—the photonic bands and the optical properties derived from them are needed. Knowing the effects of different parameters defining the opal geometry and different possible modifications of its structure are needed, too. An accurate definition of the device will be required to obtain a good performance. With this aim, the optics of light with a wavevector in the vicinity of the L point in the Brillouin zone and its coupling to bare opals band structure are presented. An important aspect is the transition from finite to infinite crystal and the study of size effects on the bands. It is possible to substantially alter the photonic band structure of an opal-based system, while maintaining the lattice structure, simply by growing layers of other materials with an appropriate refractive index. Here, it is shown how, by the growth of accurately controlled thin layers of silicon and germanium, and further processing, one can induce the opening of two complete photonic band gaps (PBGs) in an opal structure. Finally, the possibility to fabricate a simple device consisting in a planar waveguide will be shown. By means of a very simple and inexpensive procedure, engineered planar defects acting as microcavities have been realized. These can be viewed as a particular case of a much more general class of heterostructures that can be grown by combining opal vertical deposition and chemical vapour deposition of oxides. A further step is made by applying electron beam lithography to provide lateral definition and facilitate three-dimensional structuring.  相似文献   

20.
The band structure of 3D photonic crystal that could be synthesized by means of interference lithography with triple-exposure two-beam interference technique has been investigated. As a result of the geometry optimization the optimal conditions for maximal band gaps with different refractive index contrast have been obtained. The refractive index threshold for gap opening equaled to 2.14 has been predicted for this method of photonic crystals synthesis. This value is close to the refractive index thresholds of the best known structures. The continuous transition between simple cubic, face centered cubic and bulk centered cubic symmetries has been considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号