首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 916 毫秒
1.
The formation of vortices by topological phase engineering has been realized experimentally to create the first two- and four-quantum vortices in dilute atomic Bose-Einstein condensates. We consider a similar system, but in addition to the Ioffe-Pritchard magnetic trap we employ an additional hexapole field. By controlling cyclically the strengths of these magnetic fields, we show that a fixed amount of vorticity can be added to the condensate in each cycle. In an adiabatic operation of this vortex pump, the appearance of vortices into the condensate is interpreted as the accumulation of a local Berry phase. Our design can be used as an experimentally realizable vortex source for possible vortex-based applications of dilute Bose-Einstein condensates.  相似文献   

2.
Multiple vortices with different topological charges are formed by the use of two sequential geometric phase elements. These elements are realized by quasi-periodic subwavelength gratings. The first element is a spiral phase element and the second element is a spherical phase element. We provide a theoretical analysis and an experimental demonstration of the formation of the multiple vortices that comprise scalar vortices and a vectorial vortex.  相似文献   

3.
We consider the ground state of vortices in a Bose-Einstein condensate. We show that turning on a weak optical periodic potential leads to a transition from the triangular Abrikosov vortex lattice to phases where the vortices are pinned by the optical potential. We discuss the phase diagram of the system for a two-dimensional optical periodic potential with one vortex per optical lattice cell. We also discuss the influence of a one-dimensional optical periodic potential on the vortex ground state. The latter situation has no analog in other condensed-matter systems.  相似文献   

4.
The structure and phase transitions in the mesoscopic system of vortices in a quasi-two-dimensional superconducting ring are investigated. The shell structure of the mesoscopic system of vortices is studied, and its variation with the number of vortices and the parameters of the superconducting ring is analyzed. Two mechanisms of formation of new shells in vortex clusters with an increasing number of vortices in an increasing magnetic field are discovered: the generation of a new shell in a cluster and the splitting of the internal shell into two shells. The melting of vortex clusters and their thermodynamic parameters are analyzed using the Monte Carlo method. It is found that the melting of shell-type clusters occurs in two stages, orientation melting taking place at the lower temperature (during which nearly crystalline adjacent shells start rotating relative to each other) and blurring of the vortex structure occurring at the higher temperature. The shells obtained by splitting upon an increase in the number of vortices do not participate in orientational melting. The two-stage form of melting is associated with the smaller height of potential barriers being surmounted during the rotation of shells relative to one another as compared to the barrier for vortices jumping from one shell to another.  相似文献   

5.
We demonstrate simultaneous generation, propagation and detection of optical vortices using all fiber-optic system. A fiber-optic Y-coupler was used for generating spherical and doughnut beams, simultaneously. Gaussian (TEM00) beam emitted from CW red He-Ne laser is coupled into the fiber coupler and is converted into vortex beam via second arm of fiber which propagates with azimuthal phase dependence having well defined orbital angular momentum. The phase structure of vortex beam was detected by interfering both the beams using simple fiber-optic interferometer. The present all fiber-optic system might find application for detecting, sensing physical parameters and is simple and cost effective for generating and detecting optical vortices.  相似文献   

6.
The intervortex interaction is investigated in very anisotropic layered superconductors in tilted magnetic field. In such a case, the crossing lattice of Abrikosov vortices (AVs) and Josephson vortices (JVs) appears. The interaction between pancake vortices, forming the AVs and JVs, produces the deformation of the AV line. It is demonstrated that, as a result of this deformation, a long range attraction between AVs is induced. This phenomenon is responsible for the dense vortex chain formation. The vortex structure in the weak perpendicular magnetic field is the vortex chain phase, where only a small part of JVs is occupied by AVs.  相似文献   

7.
We report a method for generation of arbitrary shape and array of optical vortices by use of a superposition of coherent elementary vortices based on helical phase spatial filtering in spatial frequency domain. In this method, a helical phase spatial filter (HPSF) is placed in the spatial frequency plane of a 4-f imaging processing system. We demonstrated that the output field distribution represents the convolution between the input field and an elementary vortex field introduced by the HPSF, which results in a special shape or array of optical vortices determined by the “degenerate” properties of coherent elementary vortices and the distribution formats of the input field.  相似文献   

8.
We investigate the linear momentum density of light,which can be decomposed into spin and orbital parts,in the complex three-dimensional field distributions of tightly focused vortex segmented beams.The chosen angular spectrum exhibits two spatially separated vortices of opposite charge and orthogonal circular polarization to generate phase vortices in a meridional plane of observation.In the vicinity of those vortices,regions of negative orbital linear momentum occur.Besides these phase vortices,the occurrence of transverse orbital angular momentum manifests in a vortex charge-dependent relative shift of the energy density and linear momentum density.  相似文献   

9.
赵强  顾强 《中国物理 B》2016,25(1):16702-016702
We study the formation of vortices in a dipolar Bose–Einstein condensate in a synthetic magnetic field by numerically solving the Gross–Pitaevskii equation. The formation process depends on the dipole strength, the rotating frequency, the potential geometry, and the orientation of the dipoles. We make an extensive comparison with vortices created by a rotating trap, especially focusing on the issues of the critical rotating frequency and the vortex number as a function of the rotating frequency. We observe that a higher rotating frequency is needed to generate a large number of vortices and the anisotropic interaction manifests itself as a perceptible difference in the vortex formation. Furthermore, a large dipole strength or aspect ratio also can increase the number of vortices effectively. In particular, we discuss the validity of the Feynman rule.  相似文献   

10.
Coherent vortices in two-dimensional turbulence induce far-field effects that stabilize vorticity filaments and inhibit the generation of new vortices. We show that the large-scale energy sink often included in numerical simulations of statistically stationary two-dimensional turbulence reduces the stabilizing role of the vortices, leading to filament instability and to continuous formation of new coherent vortices. This counterintuitive effect sheds new light on the mechanisms responsible for vortex formation in forced-dissipated two-dimensional turbulence, and it has significant impact on the temporal evolution of the vortex population in freely decaying turbulence. The time dependence of vortex statistics in the presence of a large-scale energy sink can be approximately described by a modified version of the scaling theory developed for small-scale dissipation.  相似文献   

11.
A Zeeman magnetic field can induce a Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) phase in spin-singlet superconductors. Here we argue that there is a nontrivial solution for the FFLO vortex phase that exists near the upper critical field in which the wave function has only spatial line nodes that form intricate and unusual three-dimensional structures. These structures include a crisscrossing lattice of two sets of nonparallel line nodes. We show that these solutions arise from the decay of conventional Abrikosov vortices into pairs of fractional vortices. We propose that neutron scattering studies can observe these fractional vortex pairs through the observation of a lattice of 1/2 flux quanta vortices. We also consider related phases in noncentrosymmetric superconductors.  相似文献   

12.
We study the formation of large vortex aggregates in a rapidly rotating dilute-gas Bose-Einstein condensate. When we remove atoms from the rotating condensate with a tightly focused, resonant laser, the density can be locally suppressed, while fast circulation of a ring-shaped superflow around the area of suppressed density is maintained. Thus a giant vortex core comprising 7 to 60 phase singularities is formed. The giant core is only metastable, and it will refill with distinguishable single vortices after many rotation cycles. The surprisingly long lifetime of the core can be attributed to the influence of strong Coriolis forces in the condensate. In addition we have been able to follow the precession of off-center giant vortices for more than 20 cycles.  相似文献   

13.
A detailed understanding of the formation of magnetic vortices in closely spaced ferromagnetic nanoparticles is important for the design of ultra-high-density magnetic devices. Here, we use electron holography and micromagnetic simulations to characterize three-dimensional magnetic vortices in chains of FeNi nanoparticles. We show that the diameters of the vortex cores depend sensitively on their orientation with respect to the chain axis and that vortex formation can be controlled by the presence of smaller particles in the chains.  相似文献   

14.
《Physics letters. A》1997,229(3):190-194
We calculate the vortex interaction in Josephson-junction ladders with an external transverse magnetic field. Using the dual transformation we transform the phase model of the Josephson-junction ladders into the vortex-gas system. In the vortex-gas system vortices interact with exponentially decaying interaction potential. The ground state of the vortex-gas is investigated analytically showing the devil's staircase structure of vortex density as a function of frustration. We also study the anisotropy effect on the system.  相似文献   

15.
In tilted magnetic fields, vortices in anisotropic superconductors form one-dimensional arrangements, called vortex chains. We have visualized vortex chains by Bitter decoration and magneto-optical technique. The fundamental energy scale for the attractive interaction between pancake and Josephson vortices is evaluated by observing vortex chains under various conditions. We also explore how the vortex chains evolve when the large in-plane field is applied or when the anisotropy parameter of the system is changed  相似文献   

16.
We analyze the distribution properties of phase and phase vortices in a speckle field generated by N-pinhole random screens, and find that the phase vortex distributions show similarity and clustering in local regions. The phase patterns have a lot of sets composed of two phase vortices with opposite signs or four phase vortices which are positive and negative vortices alternately. Cases are also found where two adjacent phase vortices have the same topological charges. The density of phase vortices becomes larger with the increase of the radius of circumference and the number of pinholes on screen.Then, the relative positions of phase vortices can be adjusted by changing the radius of circumference and the number of pinholes.  相似文献   

17.
We report on a novel optical vortex array named circular optical vortex array, which is generated by the superposition of two concentric perfect optical vortices. The circular optical vortex array has a constant topological charge of +1 or ?1, the number and sign of which are determined by the topological charges of the two perfect optical vortices. Moreover, the radius of the circular optical vortex array is easily adjusted by using the cone angle of an axicon. Furthermore, the circular optical vortex array and multiple circular optical vortex array can be rotated by changing the initial phase difference of the perfect optical vortices on demand. This work demonstrates a complex structured optical field, which is of significance for applications such as optical tweezers, micro‐particle manipulation, and optical imaging.  相似文献   

18.
We consider the vortices in a superconductor with two individually conserved condensates in a finite magnetic field. The ground state is a lattice of cocentered vortices in both order parameters. We find two phase transitions: (i) a "vortex sublattice melting" transition where vortices in the field with lowest phase stiffness ("light vortices") lose cocentricity with the vortices with large phase stiffness ("heavy vortices"), entering a liquid state (the structure factor of the light vortices vanishes continuously; this transition is in the 3Dxy universality class); (ii) a first-order melting transition of the lattice of heavy vortices, in a liquid of light vortices.  相似文献   

19.
The formation of vortices at a moving front of lightweight granular particles is investigated experimentally. The particles used in this study are made of polystyrene foam with three different diameters of nearly uniform size. Pairs of vortices are found to emerge at the moving front at regular intervals, thereby forming a wavy pattern. Once the vortices are produced, the flow velocity tends to increase. A simple analysis suggests the existence of a velocity boundary layer at the moving front, whose thickness increases with increasing particle diameter. The frontal radius of each vortex pair is about the size of this boundary layer; when the radius exceeds this size, the front tends to bifurcate into a train of vortices with the size of the boundary layer. The formation of twin vortices leads to a reduction in the air drag force exerted on the system, and thereby the system attains a higher flow velocity, i.e., a higher conversion rate of gravitational potential energy to the kinetic energy of the particle motion. The higher conversion rate of potential energy thus feeds back to the development of the vortex motion, resulting in the twin vortex formation.  相似文献   

20.
We study ground state vortex configurations in a rotating atom-molecule Bose-Einstein condensate. It is found that the coherent coupling between the atomic and molecular condensates can render a pairing of atomic and molecular vortices into a composite structure that resembles a carbon dioxide molecule. Structural phase transitions of vortex lattices are also explored through different physical parameters including the rotational frequency of the system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号