首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The phenomenon of switching of the domain walls generated by frustrations in a two-layer ferromagnet-antiferromagnet nanostructure has been studied theoretically taking into account the energy of the uniaxial anisotropy beyond the exchange approximation. This phenomenon manifests itself in the fact that, as the magnetic field increases, the ferromagnetic layer divided into nanodomains by domain walls perpendicular to the layer plane becomes single-domain, and the antiferromagnetic layer that is uniform in weak fields is divided into 180° domains by the domain walls perpendicular to the layer. The phase diagram of the two-layer nanostructure has been constructed in the variables “the magnetic field-the characteristic distance between atomic step edges at the interface between the layers.”  相似文献   

2.
The phenomenon of ??switching?? of the domain walls generated by frustrations in a two-layer ferromagnet-antiferromagnet nanostructure has been studied using numerical simulation methods. This phenomenon manifests itself in the fact that, as the magnetic field increases, the ferromagnetic layer divided into nanodomains by domain walls perpendicular to the layer plane becomes single-domain, and the antiferromagnetic layer that is uniform in weak fields is divided into 180° domains by the domain walls perpendicular to the layer. The structures of these domain walls have been calculated in various magnetic fields.  相似文献   

3.
Transport through zinc blende magnetic semiconductors with magnetic domain walls is studied theoretically. We show that these magnetic domain walls have an intrinsic resistance due to the effective hole spin-orbit interaction. The intrinsic resistance is independent of the domain-wall shape and width and survives the adiabatic limit. For typical parameters, the intrinsic domain-wall resistance is comparable to the Sharvin resistance and should be experimentally measurable.  相似文献   

4.
In the present work, we have compared the resistance of the 90°, 180°, and 360° domain walls in the presence of external magnetic field. The calculations are based on the Boltzmann transport equation within the relaxation time approximation. One-dimensional Néel-type domain walls between two domains whose magnetization differs by angle of 90°, 180°, and 360° are considered. The results indicate that the resistance of the 360° DW is more considerable than that of the 90° and 180° DWs. It is also found that the domain wall resistance can be controlled by applying transverse magnetic field. Increasing the strength of the external magnetic field enhances the domain wall resistance. In providing spintronic devices based on magnetic nanomaterials, considering and controlling the effect of domain wall on resistivity are essential.  相似文献   

5.
The contribution to electrical resistance due to scattering of charge carriers by domain walls is analyzed. It is revealed that “unusual” domain walls are created by frustrations in ferromagnet-antiferromagnet multilayer magnetic structures. The thickness of an unusual domain wall is substantially less than that of a usual domain wall. It is shown that scattering of charge carriers by unusual domain walls can contribute significantly to the magnetoresistance of ferromagnet-antiferromagnet multilayer magnetic structures. An analysis of the contribution made by the Levy-Zhang mechanism to the magnetoresistance demonstrates that the initial estimate obtained for this contribution is considerably exaggerated.  相似文献   

6.
The motion of magnetic domain walls in permalloy nanowires is investigated by real-time resistance measurements. The domain wall velocity is measured as a function of the magnetic field in the presence of a current flowing through the nanowire. We show that the current can significantly increase or decrease the domain wall velocity, depending on its direction. These results are understood within a one-dimensional model of the domain wall dynamics which includes the spin transfer torque.  相似文献   

7.
Domain walls in ferromagnetic metals are known to be a source of resistance. In the present work resistance of a domain wall in a ferromagnetic nanojunction is investigated using the semiclassical approach. The analysis is based on the Boltzmann transport equation, within the relaxation time approximation. The one-dimensional Néel-type magnetic domain wall is considered and the effect of the electron-photon interaction on the resistance is studied. The results indicate that polarization and wavelength of the photon play a significant role in the magnetoresistance. The resistance of the nanojunction decreases as the wavelength of the photon increases. It is also shown that the domain wall resistance decreases by increasing the Fermi energy.  相似文献   

8.
The damping of the motion of domain walls of a sandwich domain structure by the eddy currents magnetic fields, the stray fields and the hysteresis friction fields is investigated. The blocking of the motion of domain walls by the eddy currents magnetic fields is discovered.  相似文献   

9.
We measured the intrinsic domain wall resistance (DWR) of 180 degrees Ne el walls in a polycrystalline Co thin film deposited on top of a patterned antiferromagnetic CoO template. After field cooling through the CoO blocking temperature, exchange bias induces a spatially modulated coercivity of the Co film, resulting in a periodic domain pattern with 180 degrees Ne el walls. The intrinsic DWR is determined unambiguously by using rotating magnetic fields that result in a reversible creation and annihilation of the Ne el walls. In contrast with earlier reports, the DWR is positive and in agreement with models based on the giant magnetoresistance mechanism. A reliable, quantitative determination of the DWR requires careful numerical evaluation of the anisotropic magnetoresistance effect.  相似文献   

10.
We perform ab initio calculations of the electronic structure and conductance of atomic-size Ni nanowires with domain walls only a few atomic lattice constants wide. We show that the hybridization between noncollinear spin states leads to a reduction of the magnetic moments in the domain wall resulting in the enhancement of the domain wall resistance. Experimental studies of the magnetic moment softening may be feasible with modern techniques such as scanning tunneling spectroscopy.  相似文献   

11.
12.
The distribution of axes of easy magnetization close to a homogeneous distribution is revealed in each half-thickness of a ribbon after annealing it in a helical magnetic field. The transition from magnetic reversal of a ribbon by the displacement of two domain walls formed near a middle plane of a ribbon to magnetic reversal of a ribbon by displacement of two domain walls formed near to the main surfaces of a ribbon is found out during each half-period of a magnetic reversal.  相似文献   

13.
The structure of domain walls in thin magnetic films has been studied by the Lorentz method using electron microscopy. The possible existence of the coinciding and opposite directions of rotation of the magnetization vector in Néel domain walls has been proved experimentally. The domain walls separating 90° domains have been found in single-crystal magnetic films. These walls consist of domains with a considerably smaller area than 90° domains.  相似文献   

14.
We have found that during giant magnetoresistance measurements in approximately 10 x 10 mm(2) NiFe/Cu/Co continuous film spin-valve structures, the resistance value suddenly drops to its absolute minimum during the NiFe reversal. The results reveal that the alignment of all magnetic domains in the NiFe film follow exactly that of corresponding domains in the Co film for an appropriate applied field strength. This phenomenon is caused by trapping of the NiFe domain walls through the magnetostatic interaction with the Co domain-wall stray fields. Consequently, the interlayer domain-wall coupling induces a mirror domain structure in the magnetic trilayer.  相似文献   

15.
The velocity of domain walls driven by current in zero magnetic field is measured in permalloy nanowires using real-time resistance measurements. The domain wall velocity increases with increasing current density, reaching a maximum velocity of approximately 110 m/s when the current density in the nanowire reaches approximately 1.5 x 10(8) A/cm(2). Such high current driven domain wall velocities exceed the estimated rate at which spin angular momentum is transferred to the domain wall from the flow of spin polarized conduction electrons, suggesting that other driving mechanisms, such as linear momentum transfer, need to be taken into account.  相似文献   

16.
We have investigated the domain wall resistance for two types of domain walls in a (Ga,Mn)As Hall bar with perpendicular magnetization. A sizeable positive intrinsic DWR is inferred for domain walls that are pinned at an etching step, which is quite consistent with earlier observations. However, much lower intrinsic domain wall resistance is obtained when domain walls are formed by pinning lines in unetched material. This indicates that the spin transport across a domain wall is strongly influenced by the nature of the pinning.  相似文献   

17.
Forced motion of a domain wall in the presence of fluctuations of external magnetic field and those of the parameters of the magnetic medium is studied. Calculations for the models of magnetic systems described by the sine-Gordon and Landau-Lifshitz equations are presented. It is shown that the driven motion of domain walls is characterized by the time-independent velocity distribution function which is used to calculate various statistical characteristics of the domain wall. Analysis of the mean velocity of the steady motion of the domain wall leads to the conclusion that the presence of a fluctuating magnetic field results in an increase of the effective relaxation constant of the magnetic system. In case of the sine-Gordon model the mean radiation power accompanying the forced motion of the domain wall is calculated. Inelastic interactions of two domain walls of opposite polarities are described.  相似文献   

18.
We show that in a magnetic nanowire with double magnetic domain walls, quantum interference results in spin-split quasistationary states localized mainly between the domain walls. Spin-flip-assisted transmission through the domain structure increases strongly when these size-quantized states are tuned on resonance with the Fermi energy, e.g., upon varying the distance between the domain walls which results in resonance-type peaks of the wire conductance. This novel phenomenon is shown to be utilizable to manipulate the spin density in the domain vicinity. The domain wall parameters are readily controllable, and the predicted effect is hence exploitable in spintronic devices.  相似文献   

19.
The structure of domain walls in magnetic multilayers is investigated taking into account the uniaxial anisotropy and biquadratic exchange between the layers. Analytical solutions are derived for different types of domain wall structures. The majority of the solutions obtained have no analogs in conventional magnetic materials. The thickness and the energy density per unit area are calculated for the domain walls under investigation. The range of parameters that correspond to more energetically favorable structures of domain walls is established.  相似文献   

20.
The dynamics of the ab-type 180-degree domain walls was studied in weak ferromagnets with quadratic magnetoelectric interaction in alternating magnetic and electric fields. The features of the oscillatory and drift motion of the domain walls are discussed. The drift velocity of the ab-type domain walls as a function of the frequency and phase shift of the external fields is obtained. The possibility of the drift of the domain walls in a purely electric field is established.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号