首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We propose a new picture for superconductivity in kappa-(BEDT-TTF)2X salts arguing that small- q electron-phonon scattering dominates the pairing. We reproduce the distinct X-shaped d-wave gap reported recently by magneto-optic measurements and we argue that the softness of the momentum structure of the gap and the near degeneracy of s- and d-wave gap states may be at the origin of the experimental controversy about the gap symmetry. We show that a magnetic field applied parallel to the planes may induce extended gapless regions on the Fermi surface accounting for the experimental signatures of a Fulde-Ferrel-Larkin-Ovchinikov state and it may induce gap symmetry transitions as well.  相似文献   

2.
We show that finite angular momentum pairing chiral superconductors on the triangular lattice have point zeroes in the complex gap function. A topological quantum phase transition takes place through a nodal superconducting state at a specific carrier density x(c) where the normal state Fermi surface crosses the isolated zeros. For spin-singlet pairing, we show that the second-nearest-neighbor (d+id)-wave pairing can be the dominant pairing channel. The gapless critical state at x (c) approximately 0.25 has six Dirac points and is topologically nontrivial with a T3 spin relaxation rate below T(c). This picture provides a possible explanation for the unconventional superconducting state of Na(x)Co O(2). yH(2)O. Analyzing a pairing model with strong correlation using the Gutzwiller projection and symmetry arguments, we study these topological phases and phase transitions as a function of Na doping.  相似文献   

3.
We propose that the spin-triplet pairing mechanism due to disconnected Fermi surfaces proposed in our previous study [Phys. Rev. B 63, 174507 (2001)]] may be at work in a recently discovered superconductor NaxCoO2.yH2O. We introduce a single band effective model that takes into account the pocketlike Fermi surfaces along with the van Hove singularity near the K point found in the band calculation results. Applying the fluctuation exchange method and solving the linearized Eliashberg equation, the most dominant pairing is found to have spin-triplet f-wave symmetry, where the nodes of the gap function do not intersect the pocket Fermi surfaces. The presence of finite Tc is suggested in sharp contrast to cases when the gap nodes intersect the Fermi surface.  相似文献   

4.
Muon spin relaxation/rotation (μSR) is a vital technique for probing the superconducting gap structure, pairing symmetry and time reversal symmetry breaking, enabling an understanding of the mechanisms behind the unconventional superconductivity of cuprates and Fe-based high-temperature superconductors, which remain a puzzle. Very recently double layered Fe-based super- conductors having quasi-2D crystal structures and Cr-based superconductors with a quasi-1D structure have drawn considerable attention. Here we present a brief review of the characteristics of a few selected Fe- and Cr-based superconducting materials and highlight some of the major outstanding problems, with an emphasis on the superconducting pairing symmetries of these materials. We focus on μSR studies of the newly discovered superconductors ACa2Fe4As4F2 (A = K, Rb, and Cs), ThFeAsN, and A2Cr3As3 (A = K, Cs), which were used to determine the superconducting gap structures, the presence of spin fluctuations, and to search for time reversal symmetry breaking in the superconducting states. We also briefly discuss the results of μSR investigations of the superconductivity in hole and electron doped BaFe2As2.  相似文献   

5.
We introduce an effective low-energy pairing model for Fe-based superconductors with s- and d-wave interaction components and a small number of input parameters and use it to study the doping evolution of the symmetry and the structure of the superconducting gap. We argue that the model describes the entire variety of pairing states found so far in the Fe-based superconductors and allows one to understand the mechanism of the attraction in s(±) and d(x(2)-y(2)) channels, the competition between s- and d-wave solutions, and the origin of superconductivity in heavily doped systems, when only electron or only hole pockets are present.  相似文献   

6.
张警蕾  焦琳  庞贵明  袁辉球 《物理学报》2015,64(21):217403-217403
非中心对称超导体是近年发现的一类新型超导材料. 在这类材料中, 非中心对称的晶体势场产生一个有效的反对称自旋-轨道耦合(ASOC)并导致自旋简并的能级发生分裂, 从而在超导配对态中允许自旋单态和自旋三重态混合. 这一性质有别于先前研究的大部分超导体, 需要从概念上突破BCS理论框架. 此外, 理论研究还表明非中心对称超导可能还是一类潜在的拓扑超导材料. 这些独特的物理性质已激发了广泛的研究兴趣, 并且越来越受到关注.#br#超导序参量的对称性是认识和理解超导形成机理的一个重要物理量. 本文将介绍基于隧道二极管的伦敦穿透深度测量技术, 并简要综述非中心对称超导的研究现状以及穿透深度测量在非中心对称超导序参量研究中的应用. 通过对比研究具有不同反对称自旋-轨道耦合强度的非中心对称超导材料, 我们发现其混合超导配对态与反对称自旋-轨道耦合强度缺乏简单的对应关系, 但与能带劈裂(E_ASOC)相对于超导转变温度(Tc)的比值(Er=EASOC/Tc)紧密相关.  相似文献   

7.
We investigate the pairing symmetry of layered BiS2 compomlds by assuming that electron-electron correlation is still important so that the pairing is rather short range. We lind that the extended .s-wave pairing symmetry always wins over d-wave when the pairing is confined between two short range sites up to next nearest neighbors. The pairing strength is peaked around the doping level :r = 0.5. which is consistent with experimental observation. The extended s-wave pairing symmetry is very robust against spin orbital coupling because it is mainly determined by the structure of Fermi surfaces, Moreover. the extended s-wave pafiring can be distinguished from conventional swave pairing by measuring and comparing superconducting gaps of different Fermi surfaces.  相似文献   

8.
We review our nuclear-magnetic resonance (NMR) and nuclear-quadrupole-resonance (NQR) studies in superconducting Sr2RuO4, which have been performed in order to investigate the gap structure and the pairing symmetry in the superconducting state and magnetic fluctuations in the normal state. The spin-lattice relaxation rate (1/T1) of a high-quality sample with shows a sharp decrease without a coherence peak just below Tc, followed by a T3 behavior down to 0.15 K. This result indicates that the superconducting gap in pure Sr2RuO4 is a highly anisotropic character with a line-node gap. The Knight shift, which is related to the spin susceptibility, is unchanged in the superconducting state irrespective of the direction of the applied fields and various magnitude of the field. This result strongly suggests that the superconducting pairs are in the spin-triplet state, and the spin direction of the triplet pairs is considered to be changed by small fields of several hundred Oe.  相似文献   

9.
In order to probe the effect of charge fluctuations on triplet pairing, we study the pairing symmetry in the one-band Hubbard model having the off-site Coulomb repulsion (V) on top of the on-site repulsion as a model for the gamma band of Sr2RuO4, a strong candidate for a triplet pairing superconductor. The result, obtained with the dynamical cluster approximation combined with the quantum Monte Carlo method, and confirmed from the fluctuation exchange approximation, shows that while d(x(2)-y(2)) pairing dominates over p in the absence of V, introduction of V makes p(x+y) and d(xy) dominant. The gap function for the chiral p(x+y)+ip(x-y) has nodes that are consistent with the recent measurement of specific heat in rotated magnetic fields in the ruthenate. This suggests that the off-site repulsion may play an essential role in triplet superconductivity in this material.  相似文献   

10.
We investigate quantum transport in a normal-superconductor graphene heterostructure, including the possibility of an anisotropic pairing potential in the superconducting region. We find that under certain circumstances, the conductance displays an undamped, oscillatory behavior as a function of applied bias voltage. Also, we investigate how the conductance spectra are affected by a d-wave pairing symmetry. These results combine unusual features of the electronic structure of graphene with the unconventional pairing symmetry found for instance in high-Tc superconductors.  相似文献   

11.
We performed high-resolution angle-resolved photoemission spectroscopy on electron-doped high-Tc superconductor Pr0.89LaCe0.11CuO4 to study the anisotropy of the superconducting gap. The observed momentum dependence is basically consistent with the dx2-y2- wave symmetry, but obviously deviates from the monotonic dx2-y2- gap function. The maximum gap is observed not at the zone boundary, but at the hot spot where the antiferromagnetic spin fluctuation strongly couples to the electrons on the Fermi surface. The present experimental results suggest the spin-mediated pairing mechanism in electron-doped high-Tc superconductors.  相似文献   

12.
We show that with interface spin-orbit coupling, triplet pairing can occur in the half-metal/superconductor junction. The tunneling conductance is different from the usual Andreev reflection and strongly depends on the polarisation orientation. The probability of triplet pairing for different incident angles and zero-biased conductance are also calculated. The mechanism for the formation of the triplet pairing is that the interface spin-orbit coupling provides an effective spin-flip barrier, which couples all the transport modes in spin Nambu space. Because of its unique particle hole symmetry, this spin-orbit coupling interface effect is different from the spin-flip ferromagnetic barrier which induces zero-bias conductance vanishing and finite V-shape conductance within the energy gap.  相似文献   

13.
Although initially quite controversial, it is now widely accepted that the Cooper pairs in optimally doped cuprate superconductors have predominantly dx2-y2 wave function symmetry, and the controversy has now shifted to whether the pairing symmetry changes away from optimal doping. Here we present phase-sensitive tricrystal experiments on three cuprate systems: Y(0.7)Ca(0.3)Ba(2)Cu(3)O(7-delta) (Ca-doped Y-123), La2-xSrxCuO4 (La-214), and Bi(2)Sr(2)CaCu(2)O(8+delta) (Bi-2212), with doping levels covering the underdoped, optimal, and overdoped regions. Our work implies that predominantly d x2-y2 pairing symmetry is robust over a large variation in doping.  相似文献   

14.
The role of electron correlation on different pairing symmetries are discussed in details where the electron correlation has been treated within the slave boson formalism. It is shown that for a pure s or pure d wave pairing symmetry, the electronic correlation suppresses the s wave gap magnitude (as well as the ) at a faster rate than that for the d wave gap. On the other hand, a complex order parameter of the form () shows anomalous temperature dependence. For example, if the temperature () at which the d wave component of the complex order parameter vanishes happens to be larger than that for the s wave component (), then the growth of the d wave component is arrested with the onset of the s wave component of the order parameter. In this mixed phase however, we find that the suppression in different components of the gap as well as the corresponding due to coulomb correlation are very sensitive to the relative pairing strengths of s and d channels as well as the underlying lattice. Interestingly enough, in such a scenario (for a case of )the gap magnitude of the d wave component increases with electron correlation but not for certain values of electron correlation. However, this never happens in case of the s wave component. We also calculate the temperature dependence of the superconducting gap along both the high symmetry directions ( and ) in a mixed symmetry pairing state and the thermal variation of the gap anisotropy [0pt][0pt] with electron correlation. The results are discussed with reference to experimental observations. Received: 26 August 1997 / Revised: 31 December 1997 / Accepted: 28 January 1998  相似文献   

15.
Inspite of the direct evidence for Cooper pairing in the cuprates as in conventional superconductors, the pairing symmetry in the cuprate superconductors is still considered to be a controversial and a highly debatable topic. The microscopic equations appropriate for these new materials, essentially the yttrium based compounds, are discussed following Gorkov's formalism for the conventional superconductors. Various types of symmetry of the pairing parameter are considered. In this study we consider the anisotropic nature of the gap parameter to write the mean-field equations of the cuprates. We observe that the symmetry of the potential is fundamental in deciding the nature of the anisotropy in the gap parameter.  相似文献   

16.
17.
The phase diagram of the quasi-2D Ce(Ir,Rh)In5 system contains two distinct superconducting domes. By the thermal transport measurements in rotating magnetic fields H, we pinned down the superconducting gap structure of CeIrIn5 in the second dome, located distant from the first dome in proximity to an antiferromagnetic quantum critical point. Clear fourfold oscillation was observed when H is rotated within the ab plane, while no oscillation was observed within the bc plane. In sharp contrast to previous reports, our results are most consistent with dx2-y2 symmetry, implying that the superconductivity in the second phase is also mediated by antiferromagnetic spin fluctuations.  相似文献   

18.
To determine the superconducting gap function of YNi2B2C, the c-axis thermal conductivity kappa(zz) was measured in H rotated in various directions. The angular variation of kappa(zz) in H rotated within the ab plane shows a peculiar fourfold oscillation with narrow cusps. The amplitude of this fourfold oscillation becomes very small when H is rotated conically around the c axis with a tilt angle of 45 degrees. These results provide the first compelling evidence that the gap function has point nodes located along the a and b axes. This unprecedented gap structure challenges the current view on the pairing mechanism.  相似文献   

19.
The superconducting gap structure of recently discovered heavy fermion CePt(3)Si without spatial inversion symmetry was investigated by thermal transport measurements down to 40 mK. In zero field a residual T-linear term was clearly resolved as T --> 0, with a magnitude in good agreement with the value expected for a residual normal fluid with a nodal gap structure, together with a T2 dependence at high temperatures. With an applied magnetic field, the thermal conductivity grows rapidly, in dramatic contrast to fully gapped superconductors, and exhibits one-parameter scaling with T/sqrt[H]. These results place an important constraint on the order parameter symmetry; that is, CePt(3)Si is most likely to have line nodes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号