首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A. Iqbal  A. H. Toor 《Physics letters. A》2001,280(5-6):249-256
Evolutionarily stable strategy (ESS) in classical game theory is a refinement of Nash equilibrium concept. We investigate the consequences when a small group of mutants using quantum strategies try to invade a classical ESS in a population engaged in symmetric bimatrix game of prisoner's dilemma. Secondly we show that in an asymmetric quantum game between two players an ESS pair can be made to appear or disappear by resorting to entangled or unentangled initial states used to play the game even when the strategy pair remains a Nash equilibrium in both forms of the game.  相似文献   

2.
曹帅  方卯发 《中国物理》2006,15(2):276-280
It has recently been shown that linear optics alone would suffice to implement efficient quantum computation. Quantum computation circuits using coherent states as the logical qubits can be constructed from very simple linear networks, conditional measurements and coherent superposition resource states. We present the quantum game under quantum noise and a proposal for implementing the noisy quantum game using only linear optics.  相似文献   

3.
Lei Chen  Ming Gong  Guang-Can Guo 《Physica A》2010,389(19):4071-4074
A Parrondo game is a counterintuitive game where two losing games can be combined to form a winning game. We construct a quantum version of a Parrondo game based on a quantum ratchet effect for a delta-kicked model, which can be realized in optical lattices. A game set is presented and a quantum anti-Parrondo game is also investigated.  相似文献   

4.
We construct quantum games from a table of non-factorizable joint probabilities, coupled with a symmetry constraint, requiring symmetrical payoffs between the players. We give the general result for a Nash equilibrium and payoff relations for a game based on non-factorizable joint probabilities, which embeds the classical game. We study a quantum version of Prisoners' Dilemma, Stag Hunt, and the Chicken game constructed from a given table of non-factorizable joint probabilities to find new outcomes in these games. We show that this approach provides a general framework for both classical and quantum games without recourse to the formalism of quantum mechanics.  相似文献   

5.
In a three player quantum 'Dilemma' game each player takes independent decisions to maximize his/her individual gain. The optimal strategy in the quantum version of this game has a higher payoff compared to its classical counterpart. However, this advantage is lost if the initial qubits provided to the players are from a noisy source. We have experimentally implemented the three player quantum version of the 'Dilemma' game as described by Johnson, [N.F. Johnson, Phys. Rev. A 63 (2001) 020302(R)] using nuclear magnetic resonance quantum information processor and have experimentally verified that the payoff of the quantum game for various levels of corruption matches the theoretical payoff.  相似文献   

6.
《Physics letters. A》2001,286(4):245-250
We study the evolutionary stability of Nash equilibria (NE) in a symmetric quantum game played by the recently proposed scheme of applying ‘identity’ and ‘Pauli spin-flip’ operators on an initial state with classical probabilities. We show that in this symmetric game dynamic stability of a NE can be changed when the game changes its form, for example, from classical to quantum. It happens even when the NE remains intact in both forms.  相似文献   

7.
Quantum game theory is a new interdisciplinary field between game theory and system engineering research. In this paper, we extend the classical inspection game into a quantum game version by quantizing the strategy space and importing entanglement between players. Our results show that the quantum inspection game has various Nash equilibria depending on the initial quantum state of the game. It is also shown that quantization can respectively help each player to increase his own payoff, yet fails to bring Pareto improvement for the collective payoff in the quantum inspection game.  相似文献   

8.
《Physics letters. A》2020,384(15):126299
A quantum game can be viewed as a state preparation in which the final output state results from the competing preferences of the players over the set of possible output states that can be produced. It is therefore possible to view state preparation in general as being the output of some appropriately chosen (notional) quantum game. This reverse engineering approach in which we seek to construct a suitable notional game that produces some desired output state as its equilibrium state may lead to different methodologies and insights. With this goal in mind we examine the notion of preference in quantum games since if we are interested in the production of a particular equilibrium output state, it is the competing preferences of the players that determine this equilibrium state. We show that preferences on output states can be viewed in certain cases as being induced by measurement with an appropriate set of numerical weightings, or payoffs, attached to the results of that measurement. In particular we show that a distance-based preference measure on the output states is equivalent to a having a strictly-competitive set of payoffs on the results of some measurement.  相似文献   

9.
Non-local implementations of quantum gates are a vital part of quantum networks. We find an optimal non-local implementation of quantum functions, the quantum gate equivalent of a switch statement. Then, we apply this result to the Deutsch-Jozsa problem, obtaining a distributed Deutsch-Jozsa algorithm and we show the relative efficiency improvement. As an application, we find a non-cooperative game based upon the original Deutsch-Jozsa problem where a classical agent has at most a 50% probability of winning, while a quantum agent can win every time.  相似文献   

10.
We compare two different ways of quantum modification in a simple sequential game called Cat's Dilemma in the context of the debate on intransitive and transitive preferences. This kind of analysis can have essential meaning for research on artificial intelligence (some possibilities are discussed). Nature has both transitive and intransitive properties and perhaps quantum models will be more able to capture this dualism than the classical models. We also present an electoral interpretation of the game.  相似文献   

11.
Quantum strategies of quantum measurements   总被引:1,自引:0,他引:1  
In the classical Monty Hall problem, one player can always win with probability 2/3. We generalize the problem to the quantum domain and show that a fair two-party zero-sum game can be carried out if the other player is permitted to adopt quantum measurement strategy.  相似文献   

12.
G. Abal  H. Fort 《Physica A》2008,387(21):5326-5332
Iterated bipartite quantum games are implemented in terms of the discrete-time quantum walk on the line. Our proposal allows for conditional strategies, as two rational agents make a choice from a restricted set of two-qubit unitary operations. We discuss how several classical strategies are related to families of quantum strategies. A quantum version of the well known Prisoner’s Dilemma bipartite game, in which both players use mixed strategies, is presented as a specific example.  相似文献   

13.
While it is known that shared quantum entanglement can offer improved solutions to a number of purely cooperative tasks for groups of remote agents, controversy remains regarding the legitimacy of quantum games in a competitive setting. We construct a competitive game between four players based on the minority game where the maximal Nash-equilibrium payoff when played with the appropriate quantum resource is greater than that obtainable by classical means, assuming a local hidden variable model.  相似文献   

14.
This Letter extends our probabilistic framework for two-player quantum games to the multiplayer case, while giving a unified perspective for both classical and quantum games. Considering joint probabilities in the Einstein-Podolsky-Rosen-Bohm (EPR-Bohm) setting for three observers, we use this setting in order to play general three-player noncooperative symmetric games. We analyze how the peculiar non-factorizable joint probabilities provided by the EPR-Bohm setting can change the outcome of a game, while requiring that the quantum game attains a classical interpretation for factorizable joint probabilities. In this framework, our analysis of the three-player generalized Prisoner's Dilemma (PD) shows that the players can indeed escape from the classical outcome of the game, because of non-factorizable joint probabilities that the EPR setting can provide. This surprising result for three-player PD contrasts strikingly with our earlier result for two-player PD, played in the same framework, in which even non-factorizable joint probabilities do not result in escaping from the classical consequence of the game.  相似文献   

15.
The well-known refinement of the Nash Equilibrium (NE) called an Evolutionarily Stable Strategy (ESS) is investigated in the quantum Prisoner's Dilemma (PD) game that is played using an Einstein-Podolsky-Rosen type setting. Earlier results report that in this scheme the classical NE remains intact as the unique solution of the quantum PD game. In contrast, we show here that interestingly in this scheme a non-classical solution for the ESS emerges for the quantum PD.  相似文献   

16.
曹帅  方卯发  郑小娟 《中国物理》2007,16(4):915-918
It has recently been realized that quantum strategies have a great advantage over classical ones in quantum games. However, quantum states are easily affected by the quantum noise, resulting in decoherence. In this paper, we investigate the effect of quantum noise on a multiplayer quantum game with a certain strategic space, with all players affected by the same quantum noise at the same time. Our results show that in a maximally entangled state, a special Nash equilibrium appears in the range of It has recently been realized that quantum strategies have a great advantage over classical ones in quantum games. However, quantum states are easily affected by the quantum noise, resulting in decoherence. In this paper, we investigate the effect of quantum noise on a multiplayer quantum game with a certain strategic space, with all players affected by the same quantum noise at the same time. Our results show that in a maximally entangled state, a special Nash equilibrium appears in the range of 0≤p≤0.622 (p is the quantum noise parameter), and then disappears in the range of 0.622 〈 p≤ 1. Increasing the amount of quantum noise leads to the reduction of the quantum player's payoff.  相似文献   

17.
科研院所的科技自主创新能力是推动国家科技进步和经济发展,应对国际经济危机的主要动力,创建科学、完善的科技创新能力评价方法有助于提升科研院所科技创新能力,并为国家制定科技创新决策提供参考依据。本文基于鹰鸽量子博弈理论,提出了一种评价科研院所自主创新能力的方法。介绍了量子博弈论的各基本要素在科技自主创新体系中所对应的物理内涵,根据鹰鸽量子博弈理论建立了科技自主创新能力评价模型,分析了纠缠度与收益矩阵之间的关系,确立了依靠各参与者在鹰鸽量子博弈中的纠缠度来表征科技自主创新能力的方法。给出了科研院所科技自主创新能力的量子博弈论解释,构建了科技自主创新能力评价指标体系,并确定了评价的合成计算方法,即量子纠缠度的计算方法。最后,以中科院部分研究所为实例进行了科技自主创新能力的评价,并利用主成份分析法和中物院的简单统计方法对得到的数据进行了对比分析,结果证明了提出的方法合理且有可操作性。  相似文献   

18.
19.
We study quantum information transmission over multiparty quantum channel. In particular, we show an equivalence of different capacity notions and provide a multiletter characterization of a capacity region for a general quantum channel with k senders and m receivers. We point out natural generalizations to the case of two-way classical communication capacity.  相似文献   

20.
We investigate the thermal conductance in a quantum waveguide modulated with quantum dots at low temperatures. It is found that the thermal conductance sensitively depends on the geometrical parameters of the structure and boundary conditions. When the stress-free boundary conditions are applied in the structure, the universal quantum of thermal conductance can be found regardless of the geometry details in the limit T→0. For an uniform quantum waveguide, a thermal conductance plateau can be observed at very low temperatures; while for the quantum waveguide modulated with quantum dots, the plateau disappears, instead a decrease of the thermal conductance can be observed as the temperature goes up in the low temperature region, and its magnitude can be adjusted by the radius of the quantum dot. Moreover, it is found that the quantum waveguide with two coupling quantum dots exhibits oscillatory decaying thermal conductance behavior with the distance between two quantum dots. However, when the hard-wall boundary conditions are applied, the thermal conductance displays different behaviors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号