首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Interpretation of experiments on quantum dot (QD) lasers presents a challenge: the phonon bottleneck, which should strongly suppress relaxation and dephasing of the discrete energy states, often seems to be inoperative. We suggest and develop a theory for an intrinsic mechanism for dephasing in QDs: second-order elastic interaction between quantum dot charge carriers and LO phonons. The calculated dephasing times are of the order of 200 fs at room temperature, consistent with experiments. The phonon bottleneck thus does not prevent significant room temperature dephasing.  相似文献   

2.
3.
A microscopic theory of optical transitions in quantum dots with a carrier-phonon interaction is developed. Virtual transitions into higher confined states with acoustic phonon assistance add a quadratic phonon coupling to the standard linear one, thus extending the independent boson model. Summing infinitely many diagrams in the cumulant, a numerically exact solution for the interband polarization is found. Its full time dependence and the absorption line shape of the quantum dot are calculated. It is the quadratic interaction which gives rise to a temperature-dependent broadening of the zero-phonon line, calculated here for the first time in a consistent scheme.  相似文献   

4.
It is found that various kinds of shell structure which occur at specific values of the magnetic field lead to the disappearance of the orbital magnetization for particular magic numbers in small quantum dots with electron number A<30. Pis'ma Zh. éksp. Teor. Fiz. 68, No. 12, 870–875 (25 December 1998) Published in English in the original Russian journal. Edited by Steve Torstveit.  相似文献   

5.
We observe twofold shell filling in the spectra of closed one-dimensional quantum dots formed in single-wall carbon nanotubes. Its signatures include a bimodal distribution of addition energies, correlations in the excitation spectra for different electron number, and alternation of the spins of the added electrons. This provides a contrast with quantum dots in higher dimensions, where such spin pairing is absent. We also see indications of an additional fourfold periodicity indicative of K-K' subband shells. Our results suggest that the absence of shell filling in most isolated nanotube dots results from disorder or nonuniformity.  相似文献   

6.
Electron energy levels in single dots, and energy splitting and tunneling times in stacked quantum dots are calculated as functions of structure parameters. An effective mass approach is used to solve the Schrödinger equation for cylindrical dots with finite confinement potentials. Strong confinement due to small sizes produces quantized energy levels in single dots and strong interactions of the wavefunctions with adjacent dots. This electronic coupling induces significant energy splittings and short tunneling times for characteristic structures used in experiments. This coupling may even yield coherent artificial molecular states with different optical properties.  相似文献   

7.
张树群  陈芝得 《中国物理 B》2008,17(4):1436-1442
Dephasing mechanism of quantum tunnelling in molecular magnets has been studied by means of the spin-coherentstate path integral in a mean field approximation. It is found that the fluctuating uncompensated transverse field from the dipolar-dipolar interaction between molecular magnets contributes a random phase to the quantum interference phase. The resulting transition rate is determined by the average tunnel splitting over the random phase. Such a dephasing process leads to the suppression of quenching due to the quantum phase interference, and to the steps due to odd resonances in hysteresis loop survived, which is in good agreement with experimental observations in molecular nanomagnets Fes and Mn12.  相似文献   

8.
Studies of weak localization by scattering from vapor atoms for electrons on a liquid helium surface are reported. There are three contributions to the dephasing time. Dephasing by the motion of vapor atoms perpendicular to the surface is studied by varying the holding field to change the characteristic width of the electron layer at the surface. A change in vapor density alters the quasielastic scattering length and the contribution to dephasing due to the motion of atoms both perpendicular and parallel to the surface. Dephasing due to the electron-electron interaction is dependent on the electron density.  相似文献   

9.
To lowest order in the coupling strength, the spin-orbit coupling in quantum dots results in a spin-dependent Aharonov-Bohm flux. This flux decouples the spin-up and spin-down random matrix theory ensembles of the quantum dot. We employ this ensemble and find significant changes in the distribution of the Coulomb blockade peak height, in particular, a decrease of the width of the distribution. The puzzling disagreement between standard random matrix theory and the experimental distributions by Patel et al. [Phys. Rev. Lett. 81, 5900 (1998)]] might possibly be attributed to these spin-orbit effects.  相似文献   

10.
Stochastic time evolution in a nonseparable and nonintegrable quantum system is manifested by rapid dephasing of gaussian wavepackets, whose topological distribution in the coordinate-momentum space defines its irregular regions, while wavepackets initiated in regular regions exhibit quasiperiodic evolution. A gradual transition from quasiperiodic to chaotic dynamics with increasing energy is observed.  相似文献   

11.
We discuss the decoherence dynamics in a single semiconductor quantum dot and analyze two dephasing mechanisms. In the first part of the review, we examine the intrinsic source of dephasing provided by the coupling to acoustic phonons. We show that the non-perturbative reaction of the lattice to the interband optical transition results in a composite optical spectrum with a central zero-phonon line and lateral side-bands. In fact, these acoustic phonon side-bands completely dominate the quantum dot optical response at room temperature. In the second part of the article, we focus on the extrinsic dephasing mechanism of spectral diffusion that determines the quantum dot decoherence at low temperatures. We interpret the variations of both width and shape of the zero-phonon line as due to the fluctuating electrostatic environment. In particular, we demonstrate the existence of a motional narrowing regime in the limit of low incident power or low temperature, thus revealing an unconventional phenomenology compared to nuclear magnetic resonance. To cite this article: G. Cassabois, R. Ferreira, C. R. Physique 9 (2008).  相似文献   

12.
We discuss relaxation in bosonic and fermionic many-particle systems. For integrable systems, time evolution can cause a dephasing effect, leading for finite subsystems to steady states. We explicitly derive those steady subsystem states and devise sufficient prerequisites for the dephasing to occur. We also find simple scenarios, in which dephasing is ineffective and discuss the dependence on dimensionality and criticality. It follows further that, after a quench of system parameters, entanglement entropy will become extensive. This provides a way of creating strong entanglement in a controlled fashion.  相似文献   

13.
The lowest excitations of a repulsively interacting few particle system are investigated within correlated “pocket state” basis functions. For long range interaction and non-isotropic confining potentials the method becomes exact, in the limit of large mean inter-particle distancesr s. The multiplet structure of the many-electron energy levels is explained and the ratios δ between the lowest excitation energies, which are related to the electron spin, are determined quantitatively using group theoretical means. The δ are independent of the detailed form of the inter-particle repulsion and of sufficiently larger s. The obtained δ-values are confirmed by available numerical data. The method is applied to 1D and 2D quantum dots.  相似文献   

14.
The lowest excitations of a repulsively interacting few particle system are investigated within correlated “pocket state” basis functions. For long range interaction and non-isotropic confining potentials the method becomes exact, in the limit of large mean inter-particle distancesr s. The multiplet structure of the many-electron energy levels is explained and the ratios δ between the lowest excitation energies, which are related to the electron spin, are determined quantitatively using group theoretical means. The δ are independent of the detailed form of the inter-particle repulsion and of sufficiently larger s. The obtained δ-values are confirmed by available numerical data. The method is applied to 1D and 2D quantum dots.  相似文献   

15.
16.
Methods for recording luminescence decay times of semiconductor PbS quantum dots (QDs) with optical transitions in the near-IR spectral range have been analyzed. A measuring complex for spectral and kinetic analysis in the near-IR range (0.8?C2.0 ??m) in the time interval from several tens of nanoseconds to several tens of microseconds is described. In this complex, a semiconductor picosecond laser is used as an excitation source; luminescence decay times are recorded by a fast InGaAs photodiode, a high-speed amplifier, and a high-frequency oscilloscope; and the measurement results are multiply averaged (up to a million times) by a program. The technical features of this method are discussed and compared with the characteristics of techniques based on photon counting or application of more powerful radiation sources, and the limitations on sensitivity are analyzed. The results of measuring the luminescence decay kinetics of PbS QDs 2.7?C7.6 nm in size prepared in the form of solutions and incorporated into matrices are reported.  相似文献   

17.
《Comptes Rendus Physique》2015,16(8):741-757
When a film is strained in two dimensions, it can relax by developing a corrugation in the third dimension. We review here the resulting morphological instability that occurs by surface diffusion, called the Asaro–Tiller–Grinfel'd instability (ATG), especially on the paradigmatic silicon/germanium system. The instability is dictated by the balance between the elastic relaxation induced by the morphological evolution, and its surface energy cost. We focus here on its development at the nanoscales in epitaxial systems when a crystal film is coherently deposited on a substrate with a different lattice parameter, thence inducing epitaxial stresses. It eventually leads to the self-organization of quantum dots whose localization is dictated by the instability long-time dynamics. In these systems, new effects, such as film/substrate wetting or crystalline anisotropy, come into play and lead to a variety of behaviors.  相似文献   

18.
The applications and physical properties of colloidal quantum dots are briefly reviewed and contrasted with those of Stransky–Krastanov grown quantum dots. To cite this article: P. Guyot-Sionnest, C. R. Physique 9 (2008).  相似文献   

19.
We analyze the frequency-dependent noise of a current through a quantum dot which is coupled to Fermi leads and which is in the Coulomb blockade regime. We show that the asymmetric shot noise, as a function of detection frequency, shows steps and becomes super-Poissonian. This provides experimental access to the quantum fluctuations of the current. We present an exact calculation of the noise for a single dot level and a perturbative evaluation of the noise in Born approximation (sequential tunneling regime but without Markov approximation) for the general case of many levels with charging interaction.  相似文献   

20.
We study magnetism in magnetically doped quantum dots as a function of the confining potential, particle numbers, temperature, and strength of the Coulomb interactions. We explore the possibility of tailoring magnetism by controlling the nonparabolicity of the confinement potential and the electron-electron Coulomb interaction, without changing the number of particles. The interplay of strong Coulomb interactions and quantum confinement leads to enhanced inhomogeneous magnetization which persists at higher temperatures than in the noninteracting case. The temperature of the onset of magnetization can be controlled by changing the number of particles as well as by modifying the quantum confinement and the strength of the Coulomb interactions. We predict a series of electronic spin transitions which arise from the competition between the many-body gap and magnetic thermal fluctuations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号