首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Using an equation-of-motion technique,we theoretically study the Kondo-Fano effect in the T-shaped double quantum dots coupled to two ferromagnetic leads by the Anderson Hamiltonian.We calculate the density of states in this system by solving Green function.Our results reveal that the density of states show some noticeable characteristics not only depending upon the interdot coupling t ab,the energy level ε d1 of the side coupled quantum dot QD b,and the relative angle θ of magnetic moment M,but also the asymmetry parameter α in ferromagnetic leads and so on.All these parameters greatly influence the density of states of the central quantum dot QD a.This system is a possible candidate for spin valve transistors and may have potential applications in the spintronics.  相似文献   

2.
In this Letter, we investigate the transport through a T-shaped double quantum dot coupled to two normal metal leads left and right and a superconducting lead. Analytical expressions of Andreev transmission and local density of states of the system at zero temperature have been obtained. We study the role of the superconducting lead in the quantum interferometric features of the double quantum dot. We report for first time the Fano effect produced by Andreev bound states in a side quantum dot. Our results show that as a consequence of quantum interference and proximity effect, the transmission from normal to normal lead exhibits Fano resonances due to Andreev bound states. We find that this interference effect allows us to study the Andreev bound states in the changes in the conductance between two normal leads.  相似文献   

3.
琚鑫  郭健宏 《物理学报》2011,60(5):57302-057302
本文利用非平衡格林函数运动方程方法,研究了与两个电极耦合在一起的三耦合量子点系统的微分电导及量子干涉的AB振荡问题.通过理论计算发现,由于量子点上的局域态密度的不同从而导致系统电导或隧穿性质的不同,而且量子点间耦合强度、量子点能级等都会对输运性质产生影响. 关键词: 量子点 非平衡格林函数 运动方程 局域态密度  相似文献   

4.
We theoretically investigate the effect of the interdot Coulomb repulsion on Kondo resonances in the series-coupled double quantum dot coupled to two ferromagnetic leads. The Hamiltonian of our system is solved by means of the slave-boson mean-field approximation, and the variation of the density of states, the transmission probability, the occupation number, and the Kondo temperature with the interdot Coulomb repulsion are discussed in the Kondo regime. The density of states is calculated for various interdot Coulomb repulsions with both parallel and antiparallel lead-polarization alignments. Our results reveal that the interdot Coulomb repulsion greatly influences the physical property of this system, and relevant underlying physics of this system is discussed.  相似文献   

5.
The temperature effect of the triangular bound potential quantum dot qubit   总被引:2,自引:0,他引:2  
We study the eigenenergies and eigenfunctions of the ground and the first-excited states of an electron, which is strongly coupled to LO-phonon in a quantum dot with triangular bound potential by using the Pekar variational method. This system may be used as a two-level qubit. Numerical calculations are performed on the electron probability density varying with respect to the time, the temperature, the electron–LO-phonon coupling strength, the confinement length of the quantum dot and the polar angle. The relationship between the oscillating period and the polar angle is derived.  相似文献   

6.
We present two methods for the creation of two-particle entangled states of excitons in a coupled quantum dot system. The system contains two identical quantum dots that are coupled by an inter-dot hopping process. The manipulation of the system is succeeded by proper application of an external laser field.  相似文献   

7.
Based on the Kubo formula for an electron tunneling junction, we revisit the nonequilibrium transport properties through a quantum dot. Since the Fermi level of the quantum dot is set by the conduction electrons of the leads, we calculate the electron current from the left side by assuming the quantum dot coupled to the right lead as another side of the tunneling junction, and the other way round is used to calculate the current from the right side. By symmetrizing these two currents, an effective local density states on the dot can be obtained, and is discussed at high and low temperatures, respectively.  相似文献   

8.
We study the influence of many-body interactions on the transport characteristics of a pair of quantum wires that are coupled to each other by means of a quantum dot. Under conditions where a local magnetic moment is formed in one of the wires, tunnel coupling to the other gives rise to an associated peak in its density of states, which can be detected directly in a conductance measurement. Our theory is therefore able to account for the key observations in the recent study of T. Morimoto et al. [Appl. Phys. Lett., ()]], and demonstrates that coupled quantum wires may be used as a system for the detection of local magnetic-moment formation.  相似文献   

9.
Density of states is studied by a ballistic electron emission microscopy/spectroscopy on self-assembled InAs quantum dots embedded in GaAs/AlGaAs heterostructure prepared by metal–organic vapor phase epitaxy. An example of integral quantum dot density of states which is proportional to superposition of a derivative of ballistic current–voltage characteristics measured at every pixel (1.05 nm×1.05 nm) of quantum dot is presented. For the two lowest observed energy levels of quantum dot (the maxima in density of states) the density of states is mapped and correlated with the shape of quantum dot. It was found that prepared quantum dots have a few peaks on their flatter top and a split of the lowest energy level can be observed. This effect can be explained by inhomogeneous (nonuniform) stress distribution in the examined quantum dot.  相似文献   

10.
The energy spectra of low-lying states of an exciton in a single and a vertically coupled quantum dots are studied under the influence of a perpendicularly applied magnetic field. Calculations are made by using the method of numerical diagonalization of the Hamiltonian within the effective-mass approximation. We also calculated the binding energy of the ground and the excited states of an exciton in a single quantum dot and that in a vertically coupled quantum dot as a function of the dot radius for different vaJues of the distance and the magnetic field strength.  相似文献   

11.
谷利英  李艳芳  楚卫东  卫英慧 《中国物理 B》2012,21(2):27301-027301
We study the effect of structure asymmetry on the energy spectrum and the far-infrared spectrum (FIR) of a lateral coupled quantum dot. The calculated spectrum shows that the parity break of coupled quantum dot results in more coherent superpositions in the low-lying states and exhibits unique anti-crossing in the two-electron FIR spectrum modulated by a magnetic field. We also find that the Coulomb correlation effect can make the FIR spectrum of coupled quantum dot without strict parity deviate greatly from Kohn theorem, which is just contrary to the symmetric case. Our results therefore suggest that FIR spectrum may be used to determine the symmetry of coupled quantum dot and to evaluate the degree of Coulomb interaction.  相似文献   

12.
The electronic transport in the quantum dot array for an arbitrary number of dots in which the quantum dot A is alternated with the quantum dot B is studied with the exact Green’s function calculation. The algebraic structures of the DC current, the differential conductance, and the density of states for the alternating A/B quantum dot array are obtained analytically. The results show that the two-step-like DC current, the two-main-peak-like differential conductance, and the multi-peak-like density of states will be sensitively modified by the number of dots and the difference for the one-electron level and the resonant width of the quantum dot A with ones of the quantum dot B.  相似文献   

13.
Based on the variational method of Pekar type, we study the energies and the wave-functions of the ground and the first-excited states of magneto-bipolaron, which is strongly coupled to the LO phonon in a parabolic potential quantum dot under an applied magnetic field, thus built up a quantum dot magneto-bipolaron qubit. The results show that the oscillation period of the probability density of the two electrons in the qubit decreases with increasing electron–phonon coupling strength α, resonant frequency of the magnetic field ω_c, confinement strength of the quantum dot ω_0, and dielectric constant ratio of the medium η; the probability density of the two electrons in the qubit oscillates periodically with increasing time t, angular coordinate φ_2, and dielectric constant ratio of the medium η; the probability of electron appearing near the center of the quantum dot is larger, and the probability of electron appearing away from the center of the quantum dot is much smaller.  相似文献   

14.
Double quantum dots offer unique possibilities for the study of many-body correlations. A system containing one Kondo dot and one effectively noninteracting dot maps onto a single-impurity Anderson model with a structured (nonconstant) density of states. Numerical renormalization-group calculations show that, while band filtering through the resonant dot splits the Kondo resonance, the singlet ground state is robust. The system can also be continuously tuned to create a pseudogapped density of states and access a quantum-critical point separating Kondo and non-Kondo phases.  相似文献   

15.
The conductance through a mesoscopic system of interacting electrons coupled to two adjacent leads is conventionally derived via the Keldysh nonequilibrium Green’s function technique, in the limit of noninteracting leads [Y. Meir, N.S. Wingreen, Phys. Rev. Lett. 68 (1992) 2512]. We extend the standard formalism to cater for a quantum dot system with Coulombic interactions between the quantum dot and the leads. The general current expression is obtained by considering the equation of motion of the time-ordered Green’s function of the system. The nonequilibrium effects of the interacting leads are then incorporated by determining the contour-ordered Green’s function over the Keldysh loop and applying Langreth’s theorem. The dot–lead interactions significantly increase the height of the Kondo peaks in density of states of the quantum dot. This translates into two Kondo peaks in the spin differential conductance when the magnitude of the spin bias equals that of the Zeeman splitting. There also exists a plateau in the charge differential conductance due to the combined effect of spin bias and the Zeeman splitting. The low-bias conductance plateau with sharp edges is also a characteristic of the Kondo effect. The conductance plateau disappears for the case of asymmetric dot–lead interaction.  相似文献   

16.
We investigate the effect of the charge state measurement of the Kondo singlet in a quantum dot transistor via a capacitively coupled quantum point contact detector. By employing the variational ansatz for the singlet ground state of the quantum dot combined with the density matrix formulation for the coupled system, we show that the coherent Kondo singlet is destroyed by the phase-sensitive as well as the current-sensitive detection in the transmission and reflection coefficients at the quantum point contact. We argue that the phase-sensitive component of the decoherence rate may explain the anomalous features observed in a recent experiment by Avinun-Kalish et al. [Phys. Rev. Lett. 92, 156801 (2004)]. We also discuss the correlations of the shot noise at the quantum point contact detector and the decoherence in the quantum dot.  相似文献   

17.
Mean-field evolution equations for the exciton and photon populations and polarizations (Bloch–Lamb equations) are written and numerically solved in order to describe the dynamics of electronic states in a quantum dot coupled to the photon field of a microcavity. The equations account for phase space filling effects and Coulomb interactions among carriers, and include also (in a phenomenological way) incoherent pumping of the quantum dot, photon losses through the microcavity mirrors, and electron–hole population decay due to spontaneous emission of the dot. When the dot may support more than one electron–hole pair, asymptotic oscillatory states, with periods between 0.5 and 1.5 ps, are found almost for any values of the system parameters.  相似文献   

18.
Transport through symmetric parallel coupled quantum dot system has been studied, using non-equilibrium Green function formalism. The inter-dot tunnelling with on-dot and inter-dot Coulomb repulsion is included. The transmission coefficient and Landaur-Buttiker like current formula are shown in terms of internal states of quantum dots. The effect of inter-dot tunnelling on transport properties has been explored. Results, in intermediate inter-dot coupling regime show signatures of merger of two dots to form a single composite dot and in strong coupling regime the behaviour of the system resembles the two decoupled dots.   相似文献   

19.
We develop the theory of conductance of a quantum dot which carries a spin and is coupled via RKKY interaction to another spin-carrying quantum dot. The found dependence of the differential conductance on the bias and magnetic field at a fixed RKKY interaction strength may allow one to distinguish between the possible ground states of the system. Transitions between the ground states are achieved by tuning the RKKY interaction, and the nature of these transitions can be extracted from the temperature dependence of the linear conductance. The feasibility of the corresponding measurements is evidenced by recent experiments by Craig et al.  相似文献   

20.
We theoretically analyzed localized charge relaxation in a double quantum dot (QD) system coupled with continuous spectrum states in the presence of Coulomb interaction between electrons within a dot. We have found that for a wide range of the system parameters charge relaxation occurs through two stable regimes with significantly different relaxation rates. A certain instant of time exists in the system at which rapid switching between stable regimes takes place. We consider this phenomenon to be applicable for the creation of active elements in nano-electronics based on the fast transition effect between two stable states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号