首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
当前,人们对量子混沌系统的能谱统计性质的了解比对其波函数性质的了解多得多.通过研究哈密顿系统初始状态为相干量子状态时的传播性质、位置与动量的平均值随时间的演化及涨落的变化性质,将给出系统波函数及相空间分布的信息,并自然给出量子、经典的对应.从理论形式上给出了哈密顿系统状态的相干态表示. So far the statistical fluctuation property of the energy spectrum and its rigidity for quantum chaotic systems are known much more than the wave functions. The study of the propagating property of a quantum state of a Hamiltonian system with its initial state being a coherent state, the time evolution of the mean position and mean momentum, as well as the variation of the position and momentum fluctuation of the system will offer information about the wave function and the phase...  相似文献   

2.
The binding energies of the ground state of excitons in the GaAs/Ga1-xAlxAs square quantum-well wire in the presence of a magnetic field are investigated by using the variational method. It is assumed that the magnetic field is applied parallel to the axis of the wire. The calculations of the binding energy as a fimction of the wire size have been performed for infinite and finite confinement potentials. The contribution of the magnetic field makes the binding energy larger obviously, particularly for the wide wire, and the magnetic field is much more pronounced for the binding energy in a square quantum wire than that in a cylindrical quantum wire. The mismatch of effective masses between the well and the barrier is also considered in the calculation.  相似文献   

3.
An investigation of the optical properties of a hydrogenic donor in spherical parabolic quantum dots has been performed by using the matrix diagonalization method. The optical absorption coefficient between the ground (L = 0) and the first excited state (L = 1) have been examined based on the computed energies and wave functions. The results are presented as a function of the incident photon energy for the different values of the confinement strength. These results show the effects of the quantum size and the impurity on the optical absorption coefficient of a donor impurity quantum dot.  相似文献   

4.
Second Bound State of Biexcitons in Quantum Dots   总被引:1,自引:0,他引:1       下载免费PDF全文
The second bound state of the biexcitons in a quantum dot,with orbital angular moentum L=1,is reported.BY using the method of few-body physics,the binding energy spectra of the second bound state of a biexciton in a GaAs quantum dot with a parabolic confinement have been calculated as a function of the electron-to-hole mass ratio and the quantum dot size.The fact that the biexcitions have a second bound state may aid in the better understanding of their binding mechanism.  相似文献   

5.
The interaction between a◇-type four-level atom and a single-mode field in the presence of Kerr medium with intensity-dependent coupling involving multi-photon processes has been studied. Using the generalized(nonlinear)Jaynes–Cummings model, the exact analytical solution of the wave function for the considered system under particular condition, has been obtained when the atom is initially excited to the topmost level and the field is in a coherent state. Some physical properties of the atom-field entangled state such as linear entropy showing the entanglement degree, Mandel parameter, mean photon number and normal squeezing of the resultant state have been calculated. The effects of Kerr medium, detuning and the intensity-dependent coupling on the temporal behavior of the latter mentioned nonclassical properties have been investigated. It is shown that by appropriately choosing the evolved parameters in the interaction process, each of the above nonclassicality features, which are of special interest in quantum optics as well as quantum information processing, can be revealed.  相似文献   

6.
B.  Rezaei 《理论物理通讯》2010,(9):518-520
The properties of muonic helium atom (^4He+2μ-e-) in ground state are considered. In this work, the energy and average distance between particles have been obtained using a wave function, which satisfies boundary conditions. It is shown that the obtained energy are very close to the values calculated by others. But the small differences of the expectation values of r^2n are due to the incorporated boundary conditions in proposed wave function and are expected.  相似文献   

7.
In this paper, the equilibrium geometry, harmonic frequency and dissociation energy of S2^- and S3^- have been calculated at QCISD/6-311++G(3d2f) and B3P86/6-311++G(3d2f) level. The S2^- ground state is of 2IIg, the S3^- ground state is of 2B1 and S3^- has a bent (C2v) structure with an angle of 115.65° The results are in good agreement with these reported in other literature. For S3^- ion, the vibration frequencies and the force constants have also been calculated. Base on the general principles of microscopic reversibility, the dissociation limits has been deduced. The Murrell-Sorbie potential energy function for S2^- has been derived according to the ab initio data through the least- squares fitting. The force constants and spectroscopic data for S2^- have been calculated, then compared with other theoretical data. The analytical potential energy function of S3^- have been obtained based on the many-body expansion theory. The structure and energy can correctly reappear on the potential surface.  相似文献   

8.
The analytic solution of the radial Schrodinger equation is studied by using the tight coupling condition of several positive-power and inverse-power potential functions in this article. Furthermore, the precisely analytic solutions and the conditions that decide the existence of analytic solution have been searched when the potential of the radial Schrodinger equation is V(r) =α1r^8 +α2r^3 + α3r^2 +β3r^-1 +β2r^-3 +β1r6-4. Generally speaking, there is only an approximate solution, but not analytic solution for SchrSdinger equation with several potentials' superposition. However, the conditions that decide the existence of analytic solution have been found and the analytic solution and its energy level structure are obtained for the Schrodinger equation with the potential which is motioned above in this paper. According to the single-value, finite and continuous standard of wave function in a quantum system, the authors firstly solve the asymptotic solution through the radial coordinate r → ∞ and r →0; secondly, they make the asymptotic solutions combining with the series solutions nearby the neighborhood of irregular singularities; and then they compare the power series coefficients, deduce a series of analytic solutions of the stationary state wave function and corresponding energy level structure by tight coupling among the coefficients of potential functions for the radial SchrSdinger equation; and lastly, they discuss the solutions and make conclusions.  相似文献   

9.
The solutions of the Schrodinger equation with quantum mechanical gravitational potential plus harmonic oscillator potential have been presented using the parametric Nikiforov-Uvarov method. The bound state energy eigen values and the corresponding un-normalized eigen functions are obtained in terms of Laguerre polynomials. Also a special case of the potential has been considered and its energy eigen values are obtained.  相似文献   

10.
The binding energy of an exciton in a wurtzite GaN/GaAlN strained cylindrical quantum dot is investigated theoretically.The strong built-in electric field due to the spontaneous and piezoelectric polarizations of a GaN/GaAlN quantum dot is included.Numerical calculations are performed using a variational procedure within the single band effective mass approximation.Valence-band anisotropy is included in our theoretical model by using different hole masses in different spatial directions.The exciton oscillator strength and the exciton lifetime for radiative recombination each as a function of dot radius have been computed.The result elucidates that the strong built-in electric field influences the oscillator strength and the recombination life time of the exciton.It is observed that the ground state exciton binding energy and the interband emission energy increase when the cylindrical quantum dot height or radius is decreased,and that the exciton binding energy,the oscillator strength and the radiative lifetime each as a function of structural parameters (height and radius) sensitively depend on the strong built-in electric field.The obtained results are useful for the design of some opto-photoelectronic devices.  相似文献   

11.
Brinkmann  D.  L&#;ffler  A.  Fishman  G. 《Il Nuovo Cimento D》1995,17(11):1389-1393
Il Nuovo Cimento D - We calculated the energy and the wave function of the exciton for i) a V-shaped quantum wire, ii) a T-shaped quantum wire and iii) a quantum wire resulting from strain-induced...  相似文献   

12.
This paper reports on the results of a self-consistent calculation of the rates of electron scattering from surface roughnesses, acoustic phonons, and polar optical phonons in a transistor structure based on a GaAs quantum wire in an AlAs matrix at temperatures T = 77 and 300 K. The rates of electron scattering are calculated in the electric-quantum limit approximation with due regard for both the collisional broadening of the electron energy spectrum and the Pauli principle. The influence of the gate voltage on these rates is investigated. The wave function of electrons and the energy level of their quantum ground state are determined by the self-consistent solution of the Poisson and Schrödinger equations.  相似文献   

13.
In the present work we obtain the wave function and the corresponding energy of exciton confined within a quantum wire. What we do is to obtain the approximate analytical solution of the corresponding Schrödinger equation for the quantum wire in the presence of Coulomb and confining terms. We then calculate the energy and the binding energy of the exciton. By using the obtained energy of exciton, we calculate the corresponding wave length. The comparison of the obtained wave length with the emitted wave length from the semiconductor under study shows a good agreement with experimental results.  相似文献   

14.
We propose a coaxial cylindrical quantum well wire (QWW) system, in which two conducting cylindrical layers are separated by an insulating layer. The ground state binding energy of a hydrogenic impurity subjected to uniform magnetic field applied parallel to the wire axis is studied within a variational scheme as a function of the inner barrier thickness for two different impurity positions and various barrier potentials. The ground state energy and wave function in the presence of a magnetic field is directly calculated using the fourth-order Runge–Kutta method. It is found that the binding energy in critical barrier thickness shows a sharp increase or decrease depending on the impurity position and magnetic field strength. The main result is that a sharp variation in the binding energy, which may be important in device applications, depends strongly not only on the location of the impurity but also on the magnetic field and the geometry of the wire.  相似文献   

15.
We studied two InAs/InP quantum wire samples with different growth conditions. The photoluminescence of the first sample reveals up to six distinct peaks, while the second has only two pronounced photoluminescence peaks that are attributed to flat wires with heights that differ by exactly one monolayer. Despite the large band offsets in this system, the photoluminescence energy shift of these peaks with a magnetic field applied in the plane of the wires shows that the extent of the exciton wave function in the growth direction is much larger than the wire height, i.e. the wave function spills over into the InP. Moreover, the exciton wave function shrinks for increasing wire height. The wave function spill-over is qualitatively confirmed in the first quantum wire sample.  相似文献   

16.
Within the effective-mass approximation, we have investigated the binding energies of donor impurities as a function of the wire dimensions and the photoionization cross-section for a hydrogenic donor impurity placed on the center of the quantum well-wire as a function of the normalized photon energy in the GaAs, Ge and Si quantum wires with infinite barriers. The calculations are performed by the variational method based on a two-parametric trial wave function. The results show that the impurity binding energy and the photoionization cross-section depend strongly on both wire dimensions and material parameters.  相似文献   

17.
We analyze the energy spectrum and propagation of electrons in a quantum wire on a 2D host medium in a normal magnetic field, representing the wire by a 1D Dirac delta function potential which would support just a single subband state in the absence of the magnetic field. The associated Schrödinger Green's function for the quantum wire is derived in closed form in terms of known functions and the Landau quantized subband energy spectrum is examined.  相似文献   

18.
In this paper, the Schrödinger equation is solved for approximation of the ground state energies and associated wave functions of carriers confined in a rectangular semiconductor (SC) quantum wire embedded in a SiO2 matrix. The problem was treated with the effective one band Hamiltonian. The finite difference scheme was used for the discretization of 2D Schrödinger equation and LAPACK package to resolve the band matrix. The energy levels were determined and the coupling between quantum wires was investigated. The effect on energies and relative wave functions of quantum wires number, size and separation was studied. The results obtained show that the energy levels can be importantly modified and controlled by these parameters. The interaction is manifested by a reduction in energies and an increase in the peak value of the wave function of the higher energy wire. This study offers a fast and inexpensive way to check device designs and processes and can be used in diverse device applications.  相似文献   

19.
库仑场对量子线中强耦合极化子性质的影响   总被引:6,自引:3,他引:3  
采用改进的线性组合算符法研究了库仑场对抛物量子线中强耦合极化子性质的影响。计算了抛物量子线中强耦合束缚极化子的基态能量、振动频率和声子平均数。讨论了这些量对库仑束缚势和约束强度的依赖关系。数值计算结果表明:量子线中强耦合束缚极化子的基态能量随库仑束缚势的增加而减少,随约束强度的增加而增大;振动频率和电子周围的光学声子平均数均随库仑束缚势的增加而增加。  相似文献   

20.
The influence of temperature and pressure, simultaneously, on the binding energy of a hydrogenic donor impurity in a ridge GaAs/Ga1−xAlxAs quantum wire is studied using a variational procedure within the effective mass approximation. The subband energy and the binding energy of the donor impurity in its ground state as a function of the wire bend width and impurity location at different temperatures and pressures are calculated. The results show that, when the temperature increases, the donor binding energy decreases for a constant applied pressure for all wire bend widths. Also, the binding energy increases by increasing the pressure for a constant temperature for all wire bend widths. In addition, when the temperature and pressure are applied simultaneously the binding energy decreases as the quantum wire bend width increases. On the whole, it is deduced that the temperature and pressure have important effects on the donor binding energy in a V-groove quantum wire.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号