首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
According to recent progresses in the finite size scaling theory of disordered systems, thermodynamic observables are not self-averaging at critical points when the disorder is relevant in the Harris criterion sense. This lack of self-averageness at criticality is directly related to the distribution of pseudo-critical temperatures Tc(i,L) over the ensemble of samples (i) of size L. In this paper, we apply this analysis to disordered Poland-Scheraga models with different loop exponents c, corresponding to marginal and relevant disorder. In all cases, we numerically obtain a Gaussian histogram of pseudo-critical temperatures Tc(i,L) with mean Tcav(L) and width ΔTc(L). For the marginal case c=1.5 corresponding to two-dimensional wetting, both the width ΔTc(L) and the shift [Tc(∞)-Tcav(L)] decay as L-1/2, so the exponent is unchanged (νrandom=2=νpure) but disorder is relevant and leads to non self-averaging at criticality. For relevant disorder c=1.75, the width ΔTc(L) and the shift [Tc(∞)-Tcav(L)] decay with the same new exponent L-1/νrandom (where νrandom ∼2.7 > 2 > νpure) and there is again no self-averaging at criticality. Finally for the value c=2.15, of interest in the context of DNA denaturation, the transition is first-order in the pure case. In the presence of disorder, the width ΔTc(L) ∼L-1/2 dominates over the shift [Tc(∞)-Tcav(L)] ∼L-1, i.e. there are two correlation length exponents ν=2 and that govern respectively the averaged/typical loop distribution.  相似文献   

2.
The effective linear and nonlinear optical properties of metal/dielectric composite media, in which ellipsoidal metal inclusions are distributed in shape, are investigated. The shape distribution function P(L x, L y) is assumed to be 2Δ-2θ(L x - 1/3 + Δ/3)θ(L y - 1/3 + Δ/3)θ(2/3 + Δ/3 - L x - L y), where θ( . . . ) is the Heaviside function, Δ is the shape variance and Li are the depolarization factors of the ellipsoidal inclusions along i-symmetric axes (i = x, y). Within the spectral representation, we adopt Maxwell-Garnett type approximation to study the effect of shape variance Δ on the effective nonlinear optical properties. Numerical results show that both the effective linear optical absorption α ∼ ωIm() and the modulus of the effective third-order optical nonlinearity enhancement |χ(3) e|/χ(3) 1 exhibit the nonmonotonic behavior with Δ. Moreover, with increasing Δ, the optical absorption and the nonlinearity enhancement bands become broad, accompanied with the decrease of their peaks. The adjustment of Δ from 0 to 1 allows us to examine the crossover behavior from no separation to large separation between optical absorption and nonlinearity enhancement peaks. As Δ → 0, i.e., the ellipsoidal shape deviates slightly from the spherical one, the dependence of |χ(3) e|/χ(3) 1 on Δ becomes strong first and then weak with increasing the imaginary part of inclusions' dielectric constant. In the dilute limit, the exact formula for the effective optical nonlinearity is derived, and the present approximation characterizes the exact results better than old mean field one does. Received 10 December 2002 Published online 4 June 2003 RID="a" ID="a"e-mail: lgaophys@pub.sz.jsinfo.net  相似文献   

3.
The quartic confining potential has emerged as a key ingredient to obtain fast rotating vortices in BEC as well as observation of quantum phase transitions in optical lattices. We calculate the critical temperature Tc of bosons at which normal to BEC transition occurs for the quartic confining potential. Further more, we evaluate the effect of finite particle number on Tc and find that ΔTc/Tc is larger in quartic potential as compared to quadratic potential for number of particles <105. Interestingly, the situation is reversed if the number of particles is 105.  相似文献   

4.
Polycrystalline two-layered perovskite La2.5-xK0.5+xMn2O 7 + δ (0 < x < 0.5) samples have been prepared by a modified sol-gel method and their magnetoresistance and magnetocaloric effects have been studied. A large deviation between the metal-insulator (MI) transition temperature (T ρ ) and the magnetic transition temperature (TC) is observed. Large magnetoresistance (MR) effects with Δρ/ρ of 40% at 12 kOe are obtained in wide temperature ranges. The maximum of the magnetic entropy change peaks at its Curie temperature (TC), far above its MI transition temperature (T ρ ). The large magnetic entropy change (1.4 J/kg.K) is obtained in the sample La2.5-xK0.5+xMn2O 7 + δ (x = 0.35) upon 10 kOe applied magnetic field. Received 2 May 2002 / Received in final form 1st October 2002 Published online 19 December 2002 RID="a" ID="a"e-mail: wzhong@ufp.nju.edu.cn  相似文献   

5.
We study the effect of fluctuations on the ac conductivity of a layered superconductor for c-axis electromagnetic wave polarization. The fluctuation contributions of different physical nature and sign (paraconductivity, Maki-Thompson anomalous contribution, one-electron density-of-states renormalization) are found to be suppressed by the external field at different characteristic frequencies (ω ALT-T c , ω MT∼max{T-T c ,τ ϕ −1 }, ω DOS∼min{T, τ −1}). As a result, the appearance of a nonmonotonic frequency dependence (pseudogap) in the infrared optical conductivity of high-temperature superconductor is predicted. Pis’ma Zh. éksp. Teor. Fiz. 64, No. 6, 397–401 (25 September 1996) Department of Theoretical Physics Moscow Institute of Steel and Alloys. Published in English in the original Russian journal. Edited by Steve Torstveit.  相似文献   

6.
Wave front of a light pulse is shown to be unstable as it propagates through a resonant saturable absorber, if its frequency is higher than the resonance frequency of the absorber. When ΔωT 2∼1, a small-scale transverse instability with the dimension of (λl abs)1/2 grows rapidly. Its growth-rate is of the order of the small-signal-absorption length of the medium.  相似文献   

7.
We consider one-dimensional (1D) interacting spinless fermions with a non-linear spectrum in a clean quantum wire (non-linear bosonization). We compute diagrammatically the 1D dynamical structure factor, S(ω,q), beyond the Tomonaga approximation focusing on it's tails, |ω| ≫vq, i.e. the 2-pair excitation continuum due to forward scattering. Our methodology reveals three classes of diagrams: two “chiral” classes which bring divergent contributions in the limits ω→±vq, i.e. near the single-pair excitation continuum, and a “mixed” class (so-called Aslamasov-Larkin or Altshuler-Shklovskii type diagrams) which is crucial for the f-sum rule to be satisfied. We relate our approach to the T=0 ones present in the literature. We also consider the case and show that the 2-pair excitation continuum dominates the single-pair one in the range: |q|T/kF ≪ω±vq ≪T (substantial for q ≪kF). As applications we first derive the small-momentum optical conductivity due to forward scattering: σ∼1/ω for T ≪ω and σ∼T/ω2 for T ≫ω. Next, within the 2-pair excitation continuum, we show that the attenuation rate of a coherent mode of dispersion Ωq crosses over from , e.g. γq ∼|q|3 for an acoustic mode, to , independent of Ωq, as temperature increases. Finally, we show that the 2-pair excitation continuum yields subleading curvature corrections to the electron-electron scattering rate: , where V is the dimensionless strength of the interaction.  相似文献   

8.
We study the effect of an external field on (1 + 1) and (2 + 1) dimensional elastic manifolds, at zero temperature and with random bond disorder. Due to the glassy energy landscape the configuration of a manifold changes often in abrupt, “first order”-type of large jumps when the field is applied. First the scaling behavior of the energy gap between the global energy minimum and the next lowest minimum of the manifold is considered, by employing exact ground state calculations and an extreme statistics argument. The scaling has a logarithmic prefactor originating from the number of the minima in the landscape, and reads ΔE 1L θ[ln(L z L - ζ)]-1/2, where ζ is the roughness exponent and θ is the energy fluctuation exponent of the manifold, L is the linear size of the manifold, and Lz is the system height. The gap scaling is extended to the case of a finite external field and yields for the susceptibility of the manifolds ∼L 2D + 1 - θ[(1 - ζ)ln(L)]1/2. We also present a mean field argument for the finite size scaling of the first jump field, h 1L d - θ. The implications to wetting in random systems, to finite-temperature behavior and the relation to Kardar-Parisi-Zhang non-equilibrium surface growth are discussed. Received December 2000 and Received in final form April 2001  相似文献   

9.
We study the nature of the vibrational modes in a two-dimensional harmonic lattice with long-range correlated random masses, with power-law spectral density S(k)∼1/kα. We obtain numerically the scale invariance of the fluctuations of the relative participation number and the local density of states. We find signatures of extended vibrational modes when α>αc and αc depends on the magnitude of disorder. In order to confirm this claim, we also study the time evolution of an initially localized perturbation of the lattice. We show that the second moment of the spatial distribution of the energy displays a ballistic regime when α>αc, in agreement with the occurrence of extended vibrational modes.  相似文献   

10.
The parameters of the σ-ω-ρ model in the relativistic mean-field theory with nonlinear σ-meson self-interaction are determined by nuclear-matter properties, which are taken as those extracted by fits to data based on nonrelativistic nuclear models. The values of the relevant parameters are C σ 2∼ 94, C ω 2∼ 32, C ρ 2∼ 26, b∼ - 0.09, c∼ 1, and the σ-meson mass m σ∼ 370 MeV, while the value of the calculated nuclear- surface thickness is t∼ 1.4 fm. The field system is shown to be stable, since the σ-meson self-interaction energy is a lower bound in this whole parameter region with positive c. On the other hand, the effective nucleon mass M* is larger than 0.73M, if the symmetry incompressibility Ks is assumed to be negative and the nuclear-matter incompressibility K0 is kept less than 300 MeV. Received: 27 June 2001 / Accepted: 5 October 2001  相似文献   

11.
Statics and dynamics of the modified kinetic discrete Gaussian model are treated selfconsistently using a Gaussian probability assumption. A non-trivial roughening temperatureT R is found in exactly two dimensions only. The free energyF, the correlation length and the interface roughness h 2 are found to behave—lnFlnh 2(T R T)–1 for temperaturesT approachingT R from below. The linear relaxation rate of the order parameter is found to be proportional to –2. As a model for crystal growth, the growth rate depends linearly upon the chemical potential difference aboveT R , shows a metastable regime belowT R with a spinodal limit of metastability c , beyond which oscillatory growth starts. The critical behavior of c is found to be ln c –(T R T)–1+O(ln (T R T)).  相似文献   

12.
The temperature dependences of the ac resistivity R and ac capacitance C of arsenic selenide were measured more than four decades ago [V. I. Kruglov and L. P. Strakhov, in Problems of Solid State Electronics, Vol. 2 (Leningrad Univ., Leningrad, 1968)]. According to these measurements, the frequency dependences are R ∝ ω−0.80±0.01 and ΔC ∝ ω−0.120±0.006 (ω is the circular frequency and ΔC is measured from the temperature-independent value C 0). According to fractal-geometry methods, R ∝ ω1−3/h and ΔC ∝ ω−2+3/h , where h is the walk dimension of the electric current in arsenic selenide. Comparison of the experimental and theoretical results indicates that the walk dimensions calculated from the frequency dependences of resistivity and capacitance are h R = 1.67 ± 0.02 and h C = 1.60 ± 0.08, which are in agreement with each other within the measurement errors. The fractal dimension of the distribution of conducting sections is D = 1/h = 0.6. Since D < 1, the conducting sections are spatially separated and form a Cantor set.  相似文献   

13.
Using simple scaling arguments and two-dimensional numerical simulations of a granular gas excited by vibrating one of the container boundaries, we study a double limit of small 1-r and large L, where r is the restitution coefficient and L the size of the container. We show that if the particle density n0 and (1-r2)(n0 Ld) where d is the particle diameter, are kept constant and small enough, the granular temperature, i.e. the mean value of the kinetic energy per particle, 〈E 〉/N, tends to a constant whereas the mean dissipated power per particle, 〈D 〉/N, decreases like when N increases, provided that (1-r2)(n0 Ld)2 < 1. The relative fluctuations of E, D and the power injected by the moving boundary, I, have simple properties in that regime. In addition, the granular temperature can be determined from the fluctuations of the power I(t) injected by the moving boundary.  相似文献   

14.
Adsorption of ideal polymers with stiff backbone onto a flat surface is considered theoretically. Both scaling approach and quantitative theory are developed. We predict a self-similar monomer concentration profile c(x) ∼ x -4/3 near the surface (when the distance to the surface x is much smaller than the chain persistence length l /2). The typical conformation of a weakly adsorbed chain can be viewed as a sequence of alternating flat (2-dimensional) trains of wormlike short loops (flat blobs) and coil-like (3-dimensional) loops forming a triple-layer structure: contact layer (x < Δ) of adsorbed fragments virtually laid on the surface, proximal layer (Δ < x < l) of flat blobs, and more dilute distal corona layer (x > l). Here Δ defines the range of monomer/surface attraction, Δ ≪ l. The adsorption transition is continuous. However, its relative width is small (T * is the adsorption temperature, ΔT is the relevant temperature interval): ∼ , i.e. a discontinuous transition in the limit Δ/l↦ 0. Received 10 October 2002 and Received in final form 22 November 2002 RID="a" ID="a"Permanent address: Physics Department, Moscow State University, Moscow 119992, Russia. e-mail: semenov@polly.phys.msu.ru  相似文献   

15.
A semi-phenomenological theory of variable-range hopping (VRH) is developed for two-dimensional (2D) quasi-one-dimensional (quasi-1D) systems such as arrays of quantum wires in the Wigner crystal regime. The theory follows the phenomenology of Efros, Mott and Shklovskii allied with microscopic arguments. We first derive the Coulomb gap in the single-particle density of states, g(ε), where ε is the energy of the charge excitation. We then derive the main exponential dependence of the electron conductivity in the linear (L), i.e. σ(T) ∼exp [-(TL/T)γL], and current in the non-linear (NL), i.e. , response regimes ( is the applied electric field). Due to the strong anisotropy of the system and its peculiar dielectric properties we show that unusual, with respect to known results, Coulomb gaps open followed by unusual VRH laws, i.e. with respect to the disorder-dependence of TL and and the values of γL and γNL.  相似文献   

16.
Neutron powder diffraction was employed to study the pressure effect on the magnetic transition in the pseudobinary Laves-phase compound Er0.57Y0.43Co2 and to determine the magnetic moments of the Er- and Co-subsystems. Our studies reveal that the onset of long-range magnetic order for both the localized 4 f (Er) and itinerant 3 d (Co) electron moments appears at about the same temperature at ambient pressure. The pressure effect on Tc is found to be negative and equal for both sublattices, namely T c / p ∼ - 0.4 K/kbar. The values of the magnetic moments of the Er and the Co ions are found = 5.40±0.15μ B /atom, = 0.50±0.07μ B /atom and 5.35±0.15μ B /atom, 0.37±0.09μ B /atom, for p = 0 and 6 kbar, respectively. Our experimental results give evidence for short-range magnetic order formation at temperatures already above Tc and for a coexistence short- and long-range order below Tc down to 4 K. Received 20 December 2001 / Received in final form 12 June 2002 Published online 31 October 2002 RID="a" ID="a"e-mail: andrew.podlesnyak@psi.ch  相似文献   

17.
We consider a low-density assembly of spherical colloids, such that each is clothed by L end-grafted chemically incompatible polymer chains either of types A or B. These are assumed to be dissolved in a good common solvent. We assume that colloids are of small size to be considered as star-polymers. Two adjacent star-polymers A and B interact through a force F originating from both excluded-volume effects and chemical mismatch between unlike monomers. Using a method developed by Witten and Pincus (Macromolecules 19, 2509 (1986)) in the context of star-polymers of the same chemical nature, we determine exactly the force F as a function of the center-to-center distance h. We find that this force is the sum of two contributions F e and F s. The former, that results from the excluded volume, decays as F eA L h -1, with the L -dependent universal amplitude A LL 3/2. While the second, which comes from the chemical mismatch, decays more slowly as F s∼χB L h -1 - τ, where τ is a critical exponent whose value is found to be τ 0.40, and χ is the standard Flory interaction parameter. We find that the corresponding L-dependent universal amplitude is B LL 3 + τ /2. Theses forces are comparable near the cores of two adjacent star-polymers, i.e. for hh ca (a is the monomer size). Finally, for two star-polymers of the same chemical nature (A or B), the force F that simply results from excluded-volume effects coincides exactly with F e, and then the known result is recovered. Received 2 October 2000 and Received in final form 24 January 2001  相似文献   

18.
Starting from the generalized exponential function , with exp 0(x)=exp (x), proposed in reference [G. Kaniadakis, Physica A 296, 405 (2001)], the survival function P>(x)=exp κ(-βxα), where x∈R+, α,β>0, and , is considered in order to analyze the data on personal income distribution for Germany, Italy, and the United Kingdom. The above defined distribution is a continuous one-parameter deformation of the stretched exponential function P> 0(x)=exp (-βxα) to which reduces as κ approaches zero behaving in very different way in the x→0 and x→∞ regions. Its bulk is very close to the stretched exponential one, whereas its tail decays following the power-law P>(x)∼(2βκ)-1/κx-α/κ. This makes the κ-generalized function particularly suitable to describe simultaneously the income distribution among both the richest part and the vast majority of the population, generally fitting different curves. An excellent agreement is found between our theoretical model and the observational data on personal income over their entire range.  相似文献   

19.
We discuss the excess conductivity at nonzero frequencies in a superconductor above Tc within the Gaussian approximation. We focus the attention on the temperature range not too close to Tc: within a time-dependent Ginzburg-Landau formulation, we phenomenologically introduce a short wavelength cutoff (of the order of the inverse coherence length) in the fluctuational spectrum to suppress high momentum modes. We treat the general cases of thin wires, anisotropic thin films and anisotropic bulk samples. We obtain in all cases explicit expressions for the finite frequency fluctuational conductivity. The dc case directly follows. Close to Tc the cutoff has no effect, and the known results for Gaussian fluctuations are recovered. Above Tc, and already for ε = ln(T/T c) > 10-2, we find strong suppression of the paraconductivity as compared to the Gaussian prediction, in particular in the real part of the paraconductivity. At high ε the cutoff effects are dominant. We discuss our results in comparison with data on high-Tc superconductors. Received 19 March 2002 Published online 25 June 2002  相似文献   

20.
By implementing a time-independent, nonperturbative many-electron, many-photon theory (MEMPT), cycle-averaged complex eigenvalues were obtained for the He atom, whose real part gives the field-induced energy shift, Δ(ω 1, F 1 2, F 2,ϕ), and the imaginary part is the multiphoton ionization rate, Γ(ω 1, F 1 2, F 2,ϕ), where ω is the frequency, F is the field strength and ϕ is the phase difference. Through analysis and computation we show that, provided the intensities are weak, the dependence of Γ(ω 1, F 1 2, F 2,ϕ) on ϕ is simple. Specifically, for odd harmonics, Γ varies linearly with cos(ϕ) whilst for even harmonics it varies linearly with cos(2ϕ). In addition, this dependence on ϕ holds for Δ(ω 1, F 1 2, F 2,ϕ) as well. These relations may turn out to be applicable to other atomic systems as well, and to provide a definition of the weak field regime in the dichromatic case. When the combination of (ω 1, F 1) and (ω 2, F 2) is such that higher powers of cos(ϕ) and cos(2ϕ) become important, these rules break down and we reach the strong field regime. The herein reported results refer to Γ(ω 1, F 1 2, F 2,ϕ) and Δ(ω 1, F 1 2, F 2,ϕ) for He irradiated by a dichromatic ac-field consisting of the fundamental wavelength λ = 248 nm and its 2nd, 3rd and 4th higher harmonics. The intensities are in the range 1.0×1012-3.5×1014 W/cm2, with the intensity of the harmonics being 1-2 orders of magnitude smaller. The calculations incorporated systematically electronic structure and electron correlation effects in the discrete and in the continuous spectrum, for 1S, 1P, 1D, 1F, 1G, and 1H two-electron states of even and odd parity. Received 9 July 2000 and Received in final form 2 November 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号