首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Expressions are obtained for the pressure distribution in an externally pressurised thrust bearing for the condition when one bearing surface is rotated. The influence of centripetal acceleration and the combined effect of rotational and radial inertia terms are included in the analysis. Rotation of the bearing causes the lubricant to have a velocity component in an axial direction towards the rotating surface as it spirals radially outwards between the bearing surfaces. This results in an increase in the pumping losses and a decrease in the load capacity of the bearing. A further loss in the performance of the bearing is found when the radial inertia term, in addition to the rotational inertia term is included in the analysis.Nomenclature r, z, cylindrical co-ordinates - V r, V , V z velocity components in the r, and z directions respectively - U, X, W representative velocities - coefficient of viscosity - p static pressure at radius r - p mean static pressure at radius r - Q volume flow per unit time - 2h lubricant film thickness - density of the lubricant - r 2 outside radius of bearing = D/2 - angular velocity of bearing - R dimensionless radius = r/h - P dimensionless pressure = h 3 p/Q - Re channel Reynolds number = Q/h  相似文献   

2.
Zusammenfassung Die exakte Ähnlichkeitslösung des Problems der nichtstationären Strömung einer hypothetischen Potenzflüssigkeit in der Umgebung einer ruckartig beschleunigten Platte (Rayleighsches Problem) wird zur Konstruktion einer Näherungslösung des analogen rheodynamischen Problems für reinviskose nicht-newtonsche Flüssigkeiten benutzt. Die Überprüfung der Genauigkeit der genäherten Pseudoähnlichkeitslösung basiert auf Berechnungen der Residuen der integralen Bilanzen des Impulses und der mechanischen Energie. Numerische Ergebnisse dieses Problems werden für das Powell-Eyringsche Modell der Viskositätsfunktion angegeben.
Summary The exact similarity solution of the problem of the unsteady flow of a hypothetic power-law liquid near a suddenly started plate (Rayleigh's problem) is employed for the construction of an approximative solution of the same problem for arbitrary purely viscous non-Newtonian liquids. The testing of accuracy of this approximative pseudosimilarity solution is based on calculation of residua in the macroscopic balances of momentum and mechanical energy. Numerical results are reported for the Powell-Eyring model of the viscosity function.

Symbole a Parameter der Ähnlichkeitslösung, definiert durch die Gln. [21] und [22],a =C 0/B 0 - B 0 Parameter der Ähnlichkeitslösung, definiert durch Gl. [22] - B 1 Parameter der Ähnlichkeitslösung, definiert durch Gl. [37] - C 0 Parameter der Ähnlichkeitslösung, definiert durch Gl. [21] - D Differentialoperator, Gl. [10a, b] - Ey Kennzahl der rheologischen Ähnlichkeit für das Powell-Eyringsche Modell der Viskositätsfunktion, Gl. [43]G = / I G w = w/ I - K Konsistenzkoeffizient, Parameter des Potenzmodells der Viskositätsfunktion [7] - K scheinbarer Konsistenzkoeffizient, Gl. [23b] - n Fließindex des Potenzmodells der Viskositätsfunktion [7] - n scheinbarer Fließindex - n Index der logarithmischen Konvexität der Viskositätsfunktion - r unabhängige Veränderliche in der Ähnlichkeitslösung des Rayleighschen Problems, Gl. [17] - r unabhängige Veränderliche der Pseudoähnlichkeitslösung, Gl. [26]S = / I S w = w/I - t Zeit - T normierte Zeitvariable, Gl. [9c] - u 0 Geschwindigkeit der Platte - U (Y, T) Pseudoähnlichkeitsnäherung des FeldesV (Y, T) - V (Y, T) normiertes Geschwindigkeitsfeld, Gl. [9a — c] - Y normierte Entfernung von der Platte, Gl. [9b] - W(r; n) Ähnlichkeitsdarstellung des Geschwindigkeitsfeldes, Gl. [20a, b] - Schergeschwindigkeit, Gl. [4] - I Schergeschwindigkeits-Parameter der Viskositätsfunktion (Stoffkonstante) - w momentane Schergeschwindigkeit an der Wand - M normiertes Residuum der Impulsbilanz - E normiertes Residuum der Bilanz der mechanischen Energie - dimensionsloser Parameter, definiert durch die Gln. [13] und [14] - dimensionsloser Parameter, definiert durch Gl. [23c] - Dichte - 12, Schubspannung bei einer viskometrischen Strömung - [] Viskositätsfunktion - I Schubspannungs-Parameter der Viskositätsfunktion (Stoffkonstante) - w momentane Schubspannung an der Wand Mit 2 Abbildungen  相似文献   

3.
The Goertler instability of a hypersonic boundary layer and its influence on the wall heat transfer are experimentally analyzed. Measurements, made in a wind tunnel by means of a computerized infrared (IR) imaging system, refer to the flow over two-dimensional concave walls. Wall temperature maps (that are interpreted as surface flow visualizations) and spanwise heat transfer fluctuations are presented. Measured vortices wavelengths are correlated to non-dimensional parameters and compared with numerical predictions from the literature.List of symbols c p Specific heat coefficient at constant pressure of the free stream - F Input (true) image - F 0 Fourier number - Restored image - G Recorded (degraded) image - G Goertler number based on the boundary layer thickness, as defined by Eq. (3) - H System transfer function - M Mach number - Pr Prandtl number - p 0 Stagnation pressure - Exchanged net heat flux - Convective heat flux - Radiative heat flux - r Recovery factor - Re m Unit Reynolds number - Re x Local Reynolds number based on the distance from the leading edge - Re Local Reynolds number based on the boundary layer thickness - Curvature radius - St Stanton number, as defined by Eq. (7) - T aw Adiabatic wall temperature - T w Wall temperature - T 0 Stagnation temperature - t Time - V Free stream velocity - x Streamwise spatial coordinate - y Normal-to-wall spatial coordinate - z Spanwise spatial coordinate - Thermal diffusivity coefficient - Disturbance wavenumber - Non dimensional wavenumber - Boundary layer thickness - Goertler number based on the vortices wavelength - Vortices wavelength - Free stream density - Disturbance total amplification, as defined by Eq. (3) - Disturbance (spatial) growth rate - Non-dimensional growth rate - Perturbation amplitude of a generic quantity - Perturbation amount  相似文献   

4.
Stokes flow through a rigid porous medium is analyzed in terms of the method of volume averaging. The traditional averaging procedure leads to an equation of motion and a continuity equation expressed in terms of the volume-averaged pressure and velocity. The equation of motion contains integrals involving spatial deviations of the pressure and velocity, the Brinkman correction, and other lower-order terms. The analysis clearly indicates why the Brinkman correction should not be used to accommodate ano slip condition at an interface between a porous medium and a bounding solid surface.The presence of spatial deviations of the pressure and velocity in the volume-averaged equations of motion gives rise to aclosure problem, and representations for the spatial deviations are derived that lead to Darcy's law. The theoretical development is not restricted to either homogeneous or spatially periodic porous media; however, the problem ofabrupt changes in the structure of a porous medium is not considered.Roman Letters A interfacial area of the - interface contained within the macroscopic system, m2 - A e area of entrances and exits for the -phase contained within the macroscopic system, m2 - A interfacial area of the - interface contained within the averaging volume, m2 - A * interfacial area of the - interface contained within a unit cell, m2 - Ae area of entrances and exits for the -phase contained within a unit cell, m2 - B second order tensor used to represent the velocity deviation (see Equation (3.30)) - b vector used to represent the pressure deviation (see Equation (3.31)), m–1 - d distance between two points at which the pressure is measured, m - g gravity vector, m/s2 - K Darcy's law permeability tensor, m2 - L characteristic length scale for volume averaged quantities, m - characteristic length scale for the -phase (see Figure 2), m - characteristic length scale for the -phase (see Figure 2), m - n unit normal vector pointing from the -phase toward the -phase (n =–n ) - n e unit normal vector for the entrances and exits of the -phase contained within a unit cell - p pressure in the -phase, N/m2 - p intrinsic phase average pressure for the -phase, N/m2 - p p , spatial deviation of the pressure in the -phase, N/m2 - r 0 radius of the averaging volume and radius of a capillary tube, m - v velocity vector for the -phase, m/s - v phase average velocity vector for the -phase, m/s - v intrinsic phase average velocity vector for the -phase, m/s - v v , spatial deviation of the velocity vector for the -phase, m/s - V averaging volume, m3 - V volume of the -phase contained within the averaging volume, m3 Greek Letters V/V, volume fraction of the -phase - mass density of the -phase, kg/m3 - viscosity of the -phase, Nt/m2 - arbitrary function used in the representation of the velocity deviation (see Equations (3.11) and (B1)), m/s - arbitrary function used in the representation of the pressure deviation (see Equations (3.12) and (B2)), s–1  相似文献   

5.
The flow of a viscoelastic liquid driven by the steadily rotating bottom cover of a cylindrical cup is investigated. The flow field and the shape of the free surface are determined at the lowest significant orders of the regular domain perturbation in terms of the angular velocity of the bottom cap. The meridional field superposed on a primary azimuthal field shows a structure of multiple cells. The velocity field and the shape of the free surface are strongly effected by the cylinder aspect ratio and the elasticity of the liquid. The use of this flow configuration as a free surface rheometer to determine the first two Rivlin-Ericksen constants is shown to be promising.Nomenclature R, ,Z Coordinates in the physical domain D - , , Coordinates in the rest stateD 0 - r, ,z Dimensionless coordinates in the rest stateD 0 - Angular velocity - Zero shear viscosity - Surface tension coefficient - Density - Dimensionless surface tension parameter - 1, 2 The first two Rivlin-Ericksen constants - Stream function - Dimensionless second order meridional stream function - * Dimensionless second normal stress function - 2 Dimensionless sum of the first and second normal stress functions - N 1,N 2 The first and second normal stress functions - n Unit normal vector - D Stretching tensor - A n nth order Rivlin-Ericksen tensor - S Extra-stress - u Velocity field - U Dimensionless second order meridional velocity field - V Dimensionless first order azimuthal velocity field - p Pressure - Modified pressure field - P Dimensionless second order pressure field - J Mean curvature - a Cylinder radius - d Liquid depth at rest - D Dimensionless liquid depth at rest - h Free surface height - H Dimensionless free surface height at the second order  相似文献   

6.
Zusammenfassung Für ein im Durchlauf betriebenes System bestehend aus einem Fluß (Vorfluter) und den angeschlossenen Kläranlagen wird eine Methode zur Bestimmung der Vorfluterbelastung durch die eingeleiteten Klärwässer angegeben. Die Methode erfaßt mit Rücksicht auf die Anwendung des Verursacherprinzips im Gewässerschutz die Belastung durch jede Kläranlage für sich, und zwar in Abhängigkeit von der Wasserführung, den Emissionsraten der betreffenden Kläranlage und dem Selbstreinigungsvermögen von den organischen Stoffen aus der betreffenden Kläranlage. Die abhängigen Veränderlichen sind mit der Fließgeschwindigkeit gewichtete Mittelwerte von Schmutzstoffdichten über den Vorfluterquerschnitt. Im Falle konstanter Vorflutertemperatur und zeitunabhängiger Struktur der Klärwässer ergeben sich beispielsweise für die abhängigen Veränderlichen einfache analytische Darstellungen, welche sich als spezielle Formen des -Theorems erweisen. Es wird gezeigt, bei einem unendlich langen Vorfluter mit konstantem Volumenstrom stromabwärts der Klärwassereinleitungen stimmen die erwähnten gewichteten Mittelwerte mit den entsprechenden ungewichteten stromabwärts der Klärwassereinleitungen überein. Die entwickelte Methode kann leicht erweitert werden, um den Sauerstoffschwund im Vorfluter durch jede Kläranlage für sich zu bestimmen.
Fluid mechanical aspects of river pollution by effluents from waste treatment plants
The pollution of a river by effluent inflows from waste treatment plants is modeled under steady-state conditions. With respect to modern policies of environmental protection the method describes the river pollution by each plant separately, depending on the flow conditions, the emission rates of the plant and the microbiological decomposition of the biodegradable matter from the plant. Each dependent variable is a weighted cross-sectional mean of a density of organic matter. If the water temperature is constant and the composition of each effluent is independent of time the method gives simple analytic expressions for the dependent variables, which prove to be special versions of the -theorem. It is shown for an infinitely long river of constant volume rate of flow downstream of the effluent inflows: the weighted means mentioned agree with the corresponding nonweighted downstream of the effluent inflows. The present paper can easily the extended to determine the oxygen deficit in the river due to each plant.

Bezeichnungen a Anzahl der Kläranlagen - D(tb) Kennzahl, Einführung in 4.3 - eA Emissionsrate der abbaubaren or ganischen Verschmutzung aus der -ten Kläranlage - eU Emissionsrate der nichtabbaubaren organischen Verschmutzung aus der -ten Kläranlage - Vorfluterquerschnitt, Einführung in Gl. (4) - F Flächeninhalt von - dF Betrag eines Flächenelements, Einführung in Gl. (6) - JA Diffusionsstromdichten, Einführung in Gl. (2) bzw. Gl. (3) - L Anzahl der Stromstrecken - M Gesamtmasse der abbaubaren or- ganischen Verschmutzung in den N Teilchen, Einführung in Gl. (17) - N Anzahl der verschmutzten Flußwasserteilchen, welche die -te Nahfeldvermischungszone während des Zeitintervalles ta tb für immer verlassen - P(x, t, x, tc) Teilchendichte, Einführung in Gl. (11) und Gl.(12) - Q Selbstreinigungsvermögen, Einführung in Gl.(26) - t Zeitpunkt, Einführung in Gl.(11) - t, tb Intervallgrenzen, Einführung in 4.1 - tc Zeitpunkt, Einführung in Gl.(11) - t Zeitdifferenz, Einführung im Anschluß an Gl.(10) - t* charakteristische Zeit, Einführung in 4.3 - Strömungsgeschwindigkeit Komponente von ¯b in Richtung der zu Tal weisenden Oberflächennormalen eines Vorfluterquerschnitts, Einführung in Gl. (5) und Gl. (6) - Volumenstrom, Einführung in Gl. (7) - x Ortsvektor - x Ortsvektor eines bestimmten markierten Teilchens zur Zeit tc, Einführung in Gl.(11) - x längs der Stromachse gemessene Längenkoordinate - x x-Koordinate des Vorfluterquerschnitts durch x - x,x+1 x-Koordinaten der Vorfluterquerschnitte, welche die -te Stromstrecke stromaufwärts bzw. stromabwärts begrenzen. Einführung in 4.2. - transformierte Variable, Einführung in Gl.(65) - Zeitvariable - (tb) Kennzahl, Einführung in 4.3. - Masse der abbaubaren organischen Verschmutzung in dem markierten Teilchen, Einführung in Gl.(14) - , Integrationsvariablen, Einführung in Gl.(38) bzw. Gl.(28) - A durch die -te Kläranlage bedingte Dichte der abbaubaren organischen Verschmutzung - U durch die -te Kläranlage bedingte Dichte der nichtabbaubaren organischen Verschmutzung - Mittelwerte von bzw· , Einführung in Gl.(31) bzw. Gl.(8) - m -Wert zu einem Maximum, Einführung in Gl.(31) - Verhältnis zweier Mittelwerte, Einführung in Gl.(64) - stochastischer Mittelwert einer Zufallsgröße Y - Y Schwankung einer Zufallsgröße Y um den stochastisehen Mittelwert - Mittlung über den Vorfluterquerschnitt Der saubere Vorfluter sei definiert durch Standardwerte für Mindestanforderungen an die Flußwasserqualität. Vorschläge für solche Standardwerte werden in jüngster Zeit unter Berücksichtigung des Umweltschutzes ausführlich diskutiert ([1]; [2], S.- K 13 -).  相似文献   

7.
The pulsed wire anemometer is one of the few devices allowing measurements in flows with instantaneous flow reversal and high turbulence levels. Calculations of the measurement error due to a limited acceptance cone, however, predicted a behaviour of this error in some cases contrary to what the experimental results in turbulent shear flows showed. Pulsed-wire probes were built and tested to estimate the size of their acceptance cones. Within the acceptance cones a critical region was discovered in which the velocity samples still reached the sensor wires but were severely altered by the wake of one of the prongs. Measurements were performed in two highly turbulent shear flows in order to estimate at least the order of magnitude of the errors.Within some of the data a considerable scatter occurred, caused to a large degree by differences in the size and the symmetry of both the acceptance cones and the critical regions and in differences in the quality of approximating the calibration curve of the sensors used. The differences between data taken with the best sensor and theX-wire measurements including error estimates is less than 7% in the measurements of and .  相似文献   

8.
O. Wein 《Rheologica Acta》1977,16(3):248-260
Zusammenfassung Die Rheodynamik der stationären viskometrischen Drehströmung um eine rotierende Kugel wird mit Methoden der Variationsrechnung untersucht. Neben iterativen numerischen Lösungsmethoden, die zu exakten Resultaten führen, wird auch eine approximative Ein-Gradienten-Lösung konstruiert, die durch Quadraturen dargestellt wird. Ausgehend von dieser analytischen Approximation werden einfache Methoden zur Auswertung von Experimentaldaten vorgeschlagen, die mit Hilfe von Eintauch-Rotationsviskosimetern mit kugelförmigen Meßspindeln gewonnen wurden.
Summary The rotational viscometric flow around a rotating sphere has been studied by variational methods. The exact numerical, as well as an approximate analytical solutions are given. Employing the analytical approximation, a simple method of evaluating viscometric data from immersional (portable) viscometers with a rotating sphere is proposed.

A Achsenschnitt durch den Bereich der Strömung - B - b, c anpaßbare empirische Konstanten - C Kalibrierungsoperator - D Schergeschwindigkeit der viskosimetrischen Strömung - D ij Komponenten des Deformationsgeschwindigkeitstensors - D I, I Stoffkonstanten der VF des Ellis-Modells - g metrischer Koeffizient - H() Funktional der Ein-Gradienten-Approximation, Gl. [27] - J[] energetisches Potential - J a[] Ein-Gradienten-Approximation fürJ - K Konsistenzkoeffizient, Parameter der VF des Potenzmodells - m Parameter des Ellis-Modells - M Drehmoment - n Parameter des Potenzmodells - n, n Differentialindices der VF, Gl. [20c, d] - n*,n** Differentialindices der RC, Gl. [9], [13] - r, , z polare Zylinderkoordinaten - R Spindelhalbmesser - rheometrischer Operator - S Spindeloberfläche - U(D) energetische Funktion nachBird, Gl. [20e] - v i physikalische Komponenten der Geschwindigkeit - Z() transformierte VF, Gl. [20f] - (n) durch Gl. [35] definierte Funktion - k Verhältnis der Radien von Spindel und Wand - ( durch Gl. [43] definierte Funktion - natürliche (Radial-)Koordinate - Schubspannung der viskosimetrischen Strömung - ij Komponenten des Spannungstensors - S() Spannungsprofil an der Spindeloberfläche - M Maximalspannung an der Spindeloberfläche - mittlere Spannung an der Spindeloberfläche, Gln. [3], [22] - natürliche (Meridional-) Koordinate - Winkelgeschwindigkeit in der Flüssigkeit - Winkelgeschwindigkeit der Spindelrotation - ( rheometrische Charakteristik Mit 4 Abbildungen und 3 Tabellen  相似文献   

9.
In a brief survey of the previous work the limitations of the modified Darcy equation and of the vectorial form of the Ergun equation are discussed. To include the effect of wall friction on the flows the viscous resistance term is added to the vectorial form of the Ergun equation. Using the generalized Ergun equation a one-dimensional formulation is presented for flow of fluids through packed beds taking into account the variation of porosity along the radial direction. It is found that there is a reasonable agreement between the numerical and the experimental results and it is observed that the variation of porosity with radial position has greater influence on channeling of velocity near the walls. For the assumption of constant porosity the velocity profiles exhibit similar nature as the plug flow profiles with a thin boundary layer near the wall.
Modell der Geschwindigkeitsverteilung in einem isotherm durchströmten Festbett
Zusammenfassung In der vorliegenden Arbeit werden eingangs die Anwendbarkeitsgrenzen der modifizierten Darcy-Gleichung und der in vektorieller Form geschriebenen Ergun-Gleichung diskutiert. Um Einflüsse der Wandreibung auf eine Strömung mit in der Ergun-Gleichung berücksichtigen zu können, wird ein Reibungsterm hinzugefügt. Die so generalisierte Gleichung kann benutzt werden, um die eindimensional gerichtete Strömung durch eine Kugel schüttung zu berechnen. Eine radiale Veränderung der Schüttungsporosität ist dabei mit in die Betrachtung eingeschlossen. Das nichtlineare Grenzwertproblem wird numerisch gelöst und mit experimentellen Daten aus der Literatur verglichen. Die mit Meßwerten zufriedenstellend übereinstimmenden Rechenergebnisse zeigen, daß die radiale Porositätsverteilung in einem Festbett einen erheblichen Einfluß auf die Durchströmungsgeschwindigkeit in Wandnähe ausübt; die Berechnungen geben die Strömungsrandgängigkeit wieder. Wird die Bettporosität als unveränderlich angenommen, erhält man pfropfenströmungsähnliche Geschwindigkeitsprofile mit einer dünnen Wandgrenzschicht, in welcher die Geschwindigkeit auf den Wert null abfällt.

Nomenclature A Tridiagonal matrix defined in Eq. (20) - a Bed radius - dp Particle diameter - f1 150 (1–)2/(3d p 2 ) Darcy resistance term - f2 1,75(1–)/(3dp) Parameter of resistance due to inertial effects - ¯f1 150(1–)2/3 - ¯f2 1,75(1–)/3 - G Column vector defined in Eq. (20) - k Permeability, /f1 - L Length of the bed - P Pressure - r Radial co-ordinate - Rp Reynolds number based on particle diameter, v0dp/ - , vz Superficial velocity vector, axial component - v1z Average superficial velocity defined in Eq. (20) - V Absolute magnitude of velocity - ¯v The average velocity - v0 The velocity at the centre of the tube - X Column vector defined in Eq. (20) - r* Dimensionless radial co-ordinate, r/a - p* Dimensionless pressure, p/v 0 2 - v z * Dimensionless axial component of velocity, vz/v0 - ¯v* Dimensionless average velocity defined in Eq. (20) - z* Dimensionless axial co-ordinate, z/L Greek letters Ratio of tube radius to particle diameter, a/dp - Porosity or void fraction - 0 Porosity at the axis of the container - Dynamical viscosity - Kinematic viscosity - p Density - Distance from the wall of the container, defined in Eq. (16)  相似文献   

10.
The drag coefficient for bubbles with mobile or immobile interface rising in shear-thinning elastic fluids described by an Ellis or a Carreau model is discussed. Approximate solutions based on linearization of the equations of motion are presented for the highly elastic region of flow. These solutions are in reasonably good agreement with the theoretical predictions based on variational principles and with published experimental data. C D Drag coefficient - E * Differential operator [E * 2 = 2/2 + (sin/ 2)/(1/sin /)] - El Ellis number - F D Drag force - K Consistency index in the power-law model for non-Newtonian fluid - n Flow behaviour index in the Carreau and power-law models - P Dimensionless pressure [=(p – p 0)/0 (U /R)] - p Pressure - R Bubble radius - Re 0 Reynolds number [= 2R U /0] - Re Reynolds number defined for the power-law fluid [= (2R) n U 2–n /K] - r Spherical coordinate - t Time - U Terminal velocity of a bubble - u Velocity - Wi Weissenberg number - Ellis model parameter - Rate of deformation - Apparent viscosity - 0 Zero shear rate viscosity - Infinite shear rate viscosity - Spherical coordinate - Parameter in the Carreau model - * Dimensionless time [=/(U /R)] - Dimensionless length [=r/R] - Second invariant of rate of deformation tensors - * Dimensionless second invariant of rate of deformation tensors [=/(U /R)2] - Second invariant of stress tensors - * Dimensionless second invariant of second invariant of stress tensor [= / 0 2 (U /R)2] - Fluid density - Shear stress - * Dimensionless shear stress [=/ 0 (U /R)] - 1/2 Ellis model parameter - 1 2/* Dimensionless Ellis model parameter [= 1/2/ 0(U /R)] - Stream function - * Dimensionless stream function [=/U R 2]  相似文献   

11.
F. Durst  R. Haas 《Rheologica Acta》1981,20(2):179-192
Zusammenfassung Es werden theoretische Überlegungen zusammenfassend dargestellt, welche die Streckung und Ausrichtung von flexiblen Makromolekülen in stationären einfachen Dehnströmungen beschreiben. Die Makromoleküle werden hierbei als EDNE-(endlich dehnbare, nichtlinear elastische) Hanteln modelliert. Für den Fall niedriger bzw. hoher Dehnungsraten werden Dehnviskositätsgleichungen für Strömungen mit verdünnten Polymerlösungen angegeben.Die Arbeit vergleicht die abgeleiteten theoretischen Gleichungen mit experimentellen Ergebnissen, welche für Porenströmungen erhalten wurden; Porenströmungen weisen Dehnströmungen auf. Anhand der durchgeführten experimentellen Untersuchungen, in denen alle die den Druckverlust maßgebend beeinflussenden strömungsmechanischen und physikalisch-chemischen Parameter variiert wurden, kann gezeigt werden, daß sich die aufgezeigten theoretischen Zusammenhänge quantitativ bestätigen lassen.Schlüsselwörter Dehnströmung, Makromolekülmodell, Porenströmung, EDNE-Hantelmodell, Polymerlösung
Summary The present paper summarizes theoretical considerations regarding the elongation of flexible macromolecules in simple steady elongational flows. The macromolecules are treated as FENE(finite extensible, nonlinear elastic)-dumbbells. Equations for extensional viscosity are given for flows of dilute polymer solutions applicable at low and high elongation rates.The present paper compares the derived theoretical relationships with experimental results. These results were obtained in porous media flows, which exhibit strong elongational rates. It can be shown on the basis of the experimental investigations, that all fluid mechanic and physico-chemical parameters that influence the measured pressure losses responded as predicted by the theory.

a Mark-Houwink-Exponent - A Avogadro-Konstante - b Verhältnis von Molekülzeitkonstanten - c Polymergewichtskonzentration - d Kugeldurchmesser der Schüttung - D Diffusionskonstante - De Deborahzahl - f Reibungsbeiwert der Porenströmung - F Kraftvektor des Hantelmodells - g Erdbeschleunigung - H Hookesche Federkonstante des Makromoleküls - k Boltzmann-Konstante - k 1,2,3 empirische Konstanten - K Mark-Houwink-Konstante - l 0 Länge des Monomeren - L Länge des statistischen Fadenelementes - L 0 Maximallänge des gestreckten Polymermoleküls - L Bezugslänge für den Druckverlust der Porenströmung - m Masse des statistischen Fadenelementes - m 0 Masse des Monomeren - Molarität - M Molekulargewicht des Polymeren - n Porosität der Kugelschüttung - n 0 Hantelkonzentration - N Anzahl der statistischen Fadenelemente - p Druckverlust der Porenströmung - P Polymerisationsgrad - R Endpunktabstand des Makromoleküls - R 0 maximaler Endpunktabstand des gestreckten Moleküls - mittlerer Endpunktabstand des Moleküls - Orientierungsvektor des Hantelmodells - Re Reynoldszahl der Porenströmung - t Zeit - T Temperatur - mittlere Filtergeschwindigkeit der Porenströmung - v Strömungsfeld - Aufweitungsparameter - Bindungswinkel zweier Kohlenstoffatome - Dehnungsrate - Stokesscher Reibungsfaktor - dynamische Viskosität - * reduzierte Viskosität - [] Grenzviskositätszahl - Dehnviskosität - * reduzierte Dehnviskosität - Widerstandskennzahl der Porenströmung - v kinematische Viskosität - Dichte des Fluids - H Hookesche Relaxationszeit des EDNE-Hantelmodells - H,e Hookesche Relaxationszeit des linear elastischen Hantelmodells - R Relaxationszeit des starren Hantelmodells - zz , yy Normalspannungen - Volumenkonzentration - fl. dimensionsloser Faktor des Strömungsfeldes - 0 Konstante der Flory-Fox-Gleichung - Verteilungsfunktion des Hantelmodells - eq. Gleichgewichtsverteilungsfunktion - a aufgeweitet - e effektiv - max maximal - p polymer - s solvent, Lösungsmittel - Theta-Zustand Mit 12 Abbildungen und 2 Tabellen  相似文献   

12.
    
Heat transfer in the flow of a conducting Fluid between two non-conducting porous disks (—one is rotating and other is stationary) in the presence of a transverse uniform magnetic field and under uniform suction, is studied. Asymptotic solutions are obtained for R«M 2. The rate of Heat flux from the disks and the temperature distribution are investigated. It is observed that the temperature distribution and heat flux increase with the increase of magnetic field.Nomenclature B 0 imposed magnetic field - density of the fluid - velocity vector - p pressure - viscosity of the fluid - kinematic viscosity of the fluid - J r radial component of current density - J azimuthal component of current density - J z axial component of current density - m magnetic permeability - electrical conductivity of the fluid - U suction velocity - E r radial component of electric field - E azimuthal component of electric field - E z axial component of electric field - c p specific heat at constant pressure - angular velocity of the rotating disk - u radial component of velocity - v azimuthal component of velocity - w axial component of velocity - F() dimensionless function defined in (17) - G() dimensionless function defined in (17) - () dimensionless function defined in (18) - () dimensionless function defined in (18) - dimensionless axial distance - R suction Reynolds number, Uh/ - R 1 rotation Reynolds number, h 2/ - M Hartmann number, B 0 h(/)1/2 - P Prandtl number, c p /R - = 2R 1 2 /R 2 - dimensionless quantity - N Perturbation parameter, M 2/R - k Co-efficient of thermal conductivity - s Dimensionless quantity defined in (30) as . - E Dimensionless quantity defined as . - X Dimensionless quantity defined as . - K Constant defined in (22)  相似文献   

13.
M. Zidan 《Rheologica Acta》1981,20(4):324-333
Summary Using elliptic coordinates, the flow pattern of a fluid of grade four between two elliptic tubes is determined. A comparison between the position of the maximum of the axial velocity in the present case and in the case of two concentric circular tubes shows a basic difference. In the elliptic case the maximum is shifted towards the external wall, while in the case of concentric circular tubes the shift is in the direction of the internal wall. The secondary flow shows dissymmetry with reference to the intermediate line , which itself lies nearer to the external wall.
Zusammenfassung Unter Benutzung elliptischer Koordinaten wird die Strömung zwischen zwei elliptischen Rohren bestimmt. Ein Vergleich zwischen der Lage des axialen Geschwindigkeitsmaximums im vorliegenden Fall und im Fall zweier konzentrischer Kreisrohre ergibt einen grundsätzlichen Unterschied: Das Maximum ist im elliptischen Fall zur äußeren Wand hin verschoben, während die Verschiebung im Fall der konzentrischen Kreisrohre zur inneren Wand hin erfolgt. Die Sekundärströmung ist unsymmetrisch relativ zur mittleren Stromlinie , die selbst näher zur äußeren Wand liegt.

A planar domain representing the annular region - vector inx 1,x 2-plane - x i rectangular coordinates - rectangular unit vectors - , elliptic coordinates - 1, 2 ellipses representing respectively the internal and external tubes - = 21 annular widthy = ( – 1)/ - µ 1st grade material constant - i 2nd grade material constants - i 3rd grade material constants - i 4th grade material constants - I unit tensor - T E extra stress (T + pI) - V potential of body forces - material density = (p/) + V = –ax 3 + () - a specific driving force - arbitrary scalar function - A k Rivlin-Eriksen tensors - S stress scalar defined onA - t stress vector defined onA - P stress tensor defined onA - v axial velocity - v i i th term in the approximation ofv - u velocity vector perpendicular to the axis 4( 3 + 4 + 5 + 1/26) –2/µ(2 1 + 2)( 2 + 3) - T stress tensor - p arbitrary hydrostatic pressure - u i i th term in the approximation ofu - stream function definingu - i i th term in the approximation of With 8 figures and 1 table  相似文献   

14.
In this paper the flow is studied of an incompressible viscous fluid through a helically coiled annulus, the torsion of its centre line taken into account. It has been shown that the torsion affects the secondary flow and contributes to the azimuthal component of velocity around the centre line. The symmetry of the secondary flow streamlines in the absence of torsion, is destroyed in its presence. Some stream lines penetrate from the upper half to the lower half, and if is further increased, a complete circulation around the centre line is obtained at low values of for all Reynolds numbers for which the analysis of this paper is valid, being the ratio of the torsion of the centre line to its curvature.Nomenclature A =constant - a outer radius of the annulus - b unit binormal vector to C - C helical centre line of the pipe - D rL - g 1000 - K Dean number=Re2 - L 1+r sin - M (L 2+ 2 r 2)1/2 - n unit normal vector to C - P, P pressure and nondimensional pressure - p 0, p pressures of O(1) and O() - Re Reynolds number=aW 0/ - (r, , s), (r, , s) coordinates and nondimensional coordinates - nonorthogonal unit vectors along the coordinate directions - r 0 radius of the projection of C - t unit tangent vector to C - V r, V , V s velocity components along the nonorthogonal directions - Vr, V, V s nondimensional velocity components along - W 0 average velocity in a straight annulus Greek symbols , curvature and nondimensional curvature of C - U, V, W lowest order terms for small in the velocity components along the orthogonal directions t - r, , s first approximations to V r , V, V s for small - =/=/ - kinematic viscosity - density of the fluid - , torsion and nondimensional torsion of C - , stream function and nondimensional stream function - nondimensional streamfunction for U, V - a inner radius of the annulus After this paper was accepted for publication, a paper entitled On the low-Reynolds number flow in a helical pipe, by C.Y. Wang, has appeared in J. Fluid. Mech., Vol 108, 1981, pp. 185–194. The results in Wangs paper are particular cases of this paper for =0, and are also contained in [9].  相似文献   

15.
Experimental investigation and analysis of heat transfer process between a gas-liquid spray flow and the row of smooth cylinders placed in the surface perpendicular to the flow has been performed. Among others, there was taken into account in the analysis the phenomenon of droplets bouncing and omitting the cylinder as well as the phenomenon of the evaporation process from the liquid film surface.In the experiments test cylinders were used, which were placed between two other cylinders standing in the row.From the experiments and the analysis the conclusion can be drawn that the heat transfer coefficients values for a row of the cylinders are higher than for a single cylinder placed in the gasliquid spray flow.
Wärmeübergang an eine senkrecht anf eine Zylinderreihe auftreffende Gas-Flüssigkeits-Sprüh-Strömung
Zusammenfassung Es wurden Messungen und theoretische Analysen des Wärmeübergangs zwischen einer Gas-FlüssigkeitsSprüh-Strömung und den glatten Oberflächen einer Zylinderreihe durchgeführt, die senkrecht zum Sprühstrahl angeordnet waren. Dabei wurde in der Analyse unter anderem das Phänomen betrachtet, daß die Tropfen die Zylinderwand treffen und verfehlen können und daß sich ein Verdampfungsprozeß aus dem flüssigen Film an der Zylinderoberfläche einstellt.Gemessen wurde an einem zwischen zwei Randzylindern befindlichen Zylinder.Die Experimente und die Analyse gestatten die Schlußfolgerung, daß der Wärmeübergangskoeffizient für eine Zylinderreihe höher ist als für einen einzelnen Zylinder in der Sprühströmung.

Nomenclature a distance between axes of cylinders, m - c l specific heat capacity of liquid, J/kg K - c g specific heat capacity of gas, J/kg K - D cylinder diameter, m - g l mass velocity of liquid, kg/m2s - ¯k average volume ratio of liquid entering film to amount of liquid directed at the cylinder in gas-liquid spray flow, dimensionless - k() local volume ratio of liquid entering film to amount of liquid directed at the cylinder in gas-liquid spray flow, dimensionless - L specific latent heat of vaporisation, J/kg - m mass fraction of water in gas-liquid spray flow, dimensionless - M constant in Eq. (9) - p pressure, Pa - p g statical pressure of gas, Pa - p w pressure of gas on the cylinder surface, Pa - p external pressure on the liquid film surface, Pa - r cylindrical coordinate, m - R radius of cylinder, m - T temperature, K, °C - T l, tl liquid temperature in the gas-liquid spray, K, °C - T w,tw temperature of cylinder surface, K, °C - T temperature of gas-liquid film interface, K - U liquid film velocity, m/s - w gas velocity on cylinder surface, m/s - w g gas velocity in free stream, m/s - W l liquid vapour mass ratio in free stream, dimensionless - W liquid vapour mass ratio at the edge of a liquid film, dimensionless - x coordinate, m - y coordinate, m - z complex variable, dimensionless - average heat transfer coefficient, W/m2K - local heat transfer coefficient, W/m2 K - average heat transfer coefficient between cylinder surface and gas, W/m2 K - g, local heat transfer coefficient between cylinder surface and gas, W/m2 K - mass transfer coefficient, kg/m2s - liquid film thickness, m - lg dynamic diffusion coefficient of liquid vapour in gas, kg/m s - pressure distribution function on a cylinder surface - function defined by Eq. (3) - l liquid dynamic viscosity, kg/m s - g gas dynamic viscosity, kg/m s - cylindrical coordinate, rad, deg - l thermal conductivity of liquid, W/m K - g thermal conductivity of gas, W/m K - mass transfer driving force, dimensionless - l density of liquid, kg/m3 - g density of gas, kg/m3 - w shear stress on the cylinder surface, N/m2 - w shear stress exerted by gas at the liquid film surface, N/m2 - air relative humidity, dimensionless - T -T w - w =T wTl Dimensionless parameters I= enhancement factor of heat transfer - m *=M l/Mg molar mass of liquid to the molar mass of gas ratio - Nu g= D/ g gas Nusselt number - Pr g=c g g/g gas Prandtl number - Pr l=clll liquid Prandtl number - ¯r=(r–R)/ dimensionless coordinate - Re g=wgD g/g gas Reynolds number - Re g,max=wg,max D g/g gas Reynolds number calculated for the maximal gas velocity between the cylinders - Sc=m * g/l–g Schmidt number =/R dimensionless film thickness  相似文献   

16.
Zusammenfassung Die Temperaturverteilung über der Austauschfläche eines gasgekühlten Rippenkörpers wird numerisch berechnet und in Abhängigkeit dreier Kenngrößen anhand konkreter Beispiele graphisch veranschaulicht. Besondere Berücksichtigung findet hierbei der Wärmetransport in Strömungsrichtung und die damit einhergehende zweidimensionale Wärmeleitung in den einzelnen Rippen. Mit Hilfe des kinetischen Ansatzes für den Wärmeübergang nach Gl. (47) and (49) wird aus den Rechenergebnissen ein Rippenwirkungsgrad ermittelt. Die Kenngröße, die als ein Verhältnis von erzwungener Wärmekonvektion durch das Gas und Wärmeleitung in der Rippe interpretiert werden kann, erweist sich hierbei als ein geeigneter Parameter, um Aussagen über die Höhe des Wirkungsgrads zu erhalten. Des weiteren wird der thermische Wirkungsgrad, wie er sich aus der Gl. (53) ergibt, in Abhängigkeit einer dimensionslosen Strömungsgeschwindigkeit und einer dimensionslosen Stoffgröße bzw. eines dimensionslosen Druckverlusts in Diagrammen dargestellt.
Heat transfer in finned systems
The temperature distribution over the heat exchange area in a gas-cooled body of fins will be numerically calculated and exemplarily demonstrated in dependence of three characteristic parameters under the particular aspect of heat transfer in flow direction and two-dimensional heat conduction in the single fins. Then the efficiency of the fins defined in Eqs.(47) and (49) will be found. At this, the parameter as a rate of forced heat convection and heat conduction in the fin is a fit number to give a valuation of effectiveness of two-dimensionally extented fins. At last, the thermal efficiency will be obtained according to Eq. (53) and specified in dependence of a dimensionless flow velocity and a dimensionless material number or, alternatively, dimensionless pressure drop.

Formelzeichen A Rippenoberfläche, m2 - b Spaltweite, m - c spez. Wärmekapazität, J/kg K - h Rippenhöhe, m - H Enthalpiestrom, W - l Rippenlänge, m - p Druckverlust, Pa - p * dimensionsloser Druckverlust, Gl. (58) - q Wärmestromdichte, W/m2 - q* dimensionslose Wärmestromdichte, Gl. (26) - q Wärmestrom, W - s Rippendicke, m - u eff. Strömungsgeschwindigkeit, m/s - x, y Längenkoordinaten - z Höhen-Längen-Verhältnis, Gl. (19) - Biot-Zahl, Gl. (33) - Biot-Zahl, Gl. (4) - Graetz-Zahl, Gl. (32) - G·ub number of transfer units, Gl. (34) - Nusselt-Zahl, Gl. (31) - Prandtl-Zahl, Gl. (45) - Reynolds-Zahl, Gl. (56) - Gl. (29) - Gl. (30) - Wärmeübergangskoeffizient, W/m2 K - Wirkungsgrad - Widerstandsbeiwert, Gl. (54) - , dimensionslose Längenkoordinaten, Gl. (16) - Temperatur, °C - dimensionslose Temperatur, Gl. (17), (18) - Wärmeleitzahl, Gl. (32) - Wärmeleitfähigkeit, W/m K - kinematische Viskosität, m2/s - Dichte, kg/m3 Indizes 0 Fuß - F Rippe (fin) - G Gas - l lokal - m mittlere(r) - max maximal - p bei konstantem Druck - T bei konstanter Temperatur - th thermisch - x, y inx, y-Richtung - am Eintritt - am Austritt - modifiziert  相似文献   

17.
A system is described which allows the recreation of the three-dimensional motion and deformation of a single hydrogen bubble time-line in time and space. By digitally interfacing dualview video sequences of a bubble time-line with a computer-aided display system, the Lagrangian motion of the bubble-line can be displayed in any viewing perspective desired. The u and v velocity history of the bubble-line can be rapidly established and displayed for any spanwise location on the recreated pattern. The application of the system to the study of turbulent boundary layer structure in the near-wall region is demonstrated.List of Symbols Reynolds number based on momentum thickness u /v - t+ nondimensional time - u shear velocity - u local streamwise velocity, x-direction - u + nondimensional streamwise velocity - v local normal velocity, -direction - x + nondimensional coordinate in streamwise direction - + nondimensional coordinate normal to wall - + wire wire nondimensional location of hydrogen bubble-wire normal to wall - z + nondimensional spanwise coordinate - momentum thickness - v kinematic viscosity - W wall shear stress  相似文献   

18.
The boundary-layer flow generated on an impermeable vertical surface in a saturated porous medium is considered in the case when wall heating at a rate proportional tox is switched on at timet=0, (x measures distance along the wall and is a constant). The similarity equations which hold in the limit of larget are discussed and are shown to have a solution only for >–1. The behaviour of the solution as –1 and as is obtained. Numerical solutions of the initial value problem are then obtained for a range of values of . A direct numerical integration is possible for 1, while an iterative procedure is required for <1, with the numerical scheme becoming unstable for =–0.5.
Grenzschichtströmung an einer plötzlich aufgeheizten vertikalen Fläche, in einem gesättigten porösen Medium
Zusammenfassung Es wird die an einer undurchlässigen, vertikalen Fläche hervorgerufene Grenzschichtströmung im Falle eines Einschalten der Heizung beit=0 betrachtet. Die Stärke der Wandheizung is proportional zux , wobeix die Koordinate längs der Wand ist und eine Konstante. Die Ähnlichkeitsgleichungen werden für den Bereich von großen Zeitent besprochen und es wird gezeigt, daß eine Lösung nur für >–1 vorliegt. Es wird das Verhalten der Lösungen für –1 und erhalten. Numerische Lösungen für die Anfangsbedingungen des Problems werden für eine Reihe von -Werten errechnet. Eine direkte numerische Integration ist für 1 möglich, während für <1 eine Iteration erforderlich ist, wobei das numerische Verhalten für =–0.5 instabil wird.
  相似文献   

19.
Summary The concept of an elastic boundary layer is proposed to explain certain anomalous transport phenomena which occur during rapid external flows of viscoelastic fluids past immersed objects. Reported experimental observations are interpreted by using models based on this concept. Particularly, data on velocity independent drag and heat transfer coefficients for flow of dilute polymer solutions past tiny cylinders are satisfactorily correlated.
Zusammenfassung Es wird das Konzept einer elastischen Grenzschicht entworfen, um gewisse anomale Transportphänomene zu erklären, welche bei schnellen Strömungen viskoelastischer Flüssigkeiten um eingetauchte Körper auftreten. Die berichteten experimentellen Beobachtungen werden mit Hilfe von Modellen interpretiert, die auf diesem Konzept basieren. Insbesondere werden Daten über geschwindigkeitsunabhängige Widerstands- und Wärmeübertragungs-Koeffizienten bei der Strömung verdünnter Polymerlösungen um dünne Zylinder befriedigend korreliert.

A, B numerical constants - A 1,A 2 surface areas - C D drag coefficient - D cylinder diameter - F hoop force - h heat transfer coefficient - k thermal conductivity - M molecular weight - Nu Nusselt number - R gas constant - T absolute temperature - u x-component of the velocity - U free stream velocity - x, y Cartesian coordinates - shear rate - boundary layer thickness - 0 elastic boundary layer thickness - relaxation time - µ viscosity - v kinematic viscosity - [] intrinsic viscosity - density - normal stress difference - shear stress With 3 figures  相似文献   

20.
Zusammenfassung Die Wandgleitgeschwindigkeit von dispers-plastischen Gemischen aus Kaolinpulver und Paraffinöl wird nach der Drei-Spalte-Methode für die Couette-Strömung mit einem Searle-Rheometer ermittelt. Sie steigt zunächst mit zunehmender Schubspannung an, erreicht ein Maximum, fällt mit weiter steigender Schubspannung wieder ab und wird schließlich sogar negativ. Eine negative Wandgleitgeschwindigkeit ist natürlich physikalisch unmöglich. Dispersplastische Gemische aus Kaolinpulver und Paraffinöl zeigen also ein komplizierteres Wandverhalten als reines Wandgleiten.Zur Deutung dieses komplizierten Wandeffektes wird eine Modellvorstellung entwickelt. Wichtig ist hierbei, daß eine zunehmende Wandgleitgeschwindigkeit auftritt, bevor eine starke Scherströmung im Innern des Strömungsfeldes einsetzt. Mit beginnender Scherströmung führen die plättchenförmigen dispersen Teilchen auf Grund von Zusammenstößen seitliche Schwankungsbewegungen um die makroskopisch wahrnehmbaren Bahnkurven aus.Diese Teilchenbewegungen führen zur Zerstörung der zunächst beim Wandgleiten sich ausbildenden Mikrostrukturen an der Wand. Daher kann die Wandgleitgeschwindigkeit trotz steigender Wandschubspannung abnehmen. Die Behinderung der seitlichen Partikelbewegungen an der Wand — die dispersen Teilchen können sich auf der Wand abstützen — führt bei weiter steigender Schergeschwindigkeit im Innern des Strömungsfeldes makroskopisch zu einer Versteifung des Materials in Wandnähe. Damit können negative Werte der sog. Wandgleitgeschwindigkeit — man spricht besser von einer integralen Wandfunktion — sowie bestimmte experimentelle Befunde bei der Druckabhängigkeit und bei der Temperaturabhängigkeit der rheologischen Eigenschaften und des Wandeffektes erklärt werden.Die experimentellen Untersuchungen beschränken sich im wesentlichen auf den Wandeffekt an schwach gekrümmten Wänden in Couette-Spalten, an denen ein Krümmungseinfluß auf den Wandeffekt mit großer Wahrscheinlichkeit vernachlässigbar ist. Die Auswirkung eines Krümmungseinflusses auf die rheometrischen Meßergebnisse wird jedoch diskutiert. Die aus rheometrischen Messungen bestimmbare integrale Wandfunktion liefert im Fall des komplizierten Wandeffektes noch keine vollständige Information über das Wandverhalten.
The wall slip velocity of disperse plastic mixtures of kaolin powder and paraffin oil is determined by the so-called three-gap method for Couette flow with a Searle rheometer. At the start it grows with increasing shear stress, reaches a maximum, then decreases with further increases in shear stress and finally becomes negative. From a physical point of view, negative wall-slip-velocities are impossible. Thus it is concluded that disperse plastic mixtures of kaolin powder and paraffin oil show a more complicated wall effect than pure wall slip.In order to explain this complicated wall effect a model of the microstructure near the wall is developed: It is essential that increasing wall slip velocity occurs before the start of shear flow in the interior of the flow field. With shear flow the slab-like disperse particles perform lateral fluctuations around their macroscopically perceptible flow paths. These are caused by collisions between the particles. These lateral particle movements destroy the microstructure at the wall which was built up by pure wall slip. Therefore the wall slip velocity may decrease inspite of increasing wall shear stress. One may then assume a suppression of lateral particle movement at the wall with further increases in the shear in the interior of the flow field which will cause some kind of stiffening of the material near the wall. This assumption can explain the negative values of the so-called slip velocity (which is better termed an integral wall function) as well as some effects in connection with the pressure and temperature dependence of the flow function and integral wall function.The experimental investigations are confined to slowly curved walls in Couette gaps, where an influence of wall curvature on the wall effect may be neglected, but the influence of wall curvature on the wall effect is discussed theoretically. The integral wall function which can be determined from rheometric measurements does not yield complete information on the complicated wall effect.

f() Schubspannungsfunktion - Schubspannungsfunktion in Wandnähe - h axiale Erstreckung eines Couette-Spaltes - M d übertragenes Drehmoment in der Couette-Strömung - R kleinster Krümmungsradius einer Wand an einer Stelle - R w Radius einer zylindrischen Wand - R a, Ri Radien von Außen- und Innenzylinder eines Couette-Spaltes - R 1, R2, R3 Radien eines Drei-Spalte-Couette-Systems - R w1, Rw2 Radien von zwei Rohren - Volumenstrom in einer Rohrströmung - Volumenströme durch zwei verschiedene Rohre bei gleicher Wandschubspannung - v w (w) Wandgleitgeschwindigkeit - Winkel zwischen Wandschubspannung und der Richtung, in der die Wand am schwächsten gekrümmt ist - =(Ra/Ri)2 quadratisches Radienverhältnis - (w) Dicke der vom komplizierteren Wandeffekt beeinflußten Wandschicht - Dicke eines Gleitfilms bei Wandgleiten - w Schubspannungsänderung in der Wandschicht (w) - f(w, ) Wandfunktion - Wandabstand - ø w (w) integrale Wandfunktion bei vernachlässigbarer Wandkrümmung und vernachlässigbarer Schubspannungsänderung in der Wandschicht (w) - ø Couette ( w, 2) integrale Wandfunktion der Couette-Strömung - ø Rohr ( w, Rw) integrale Wandfunktion der Rohrströmung - ø Couette * ( w, R2) experimentell ermittelte Wandfunktion der Couette-Strömung - ø Rohr * ( w, Rw, Rw2) experimentell ermittelte Wandfunktion der Rohrströmung - 1, 2 größter bzw. kleinster Krümmungsradius einer Wand - w Wandschubspannung - a, i Wandschubspannung am Außen- bzw. Innenzylinder eines Couette-Spaltes - 2 Wandschubspannung in einem Drei-Spalte-Couette-System am mittleren RadiusR 2 - Schubspannung - Winkelgeschwindigkeitsdifferenz zwischen Außen- und Innenzylinder eines Couette-Spaltes - I (Md), II (Md), III(Md) Winkelgeschwindigkeitsdifferenzen an einem Drei-Spalte-Couette-System als Funktionen des übertragenen Momentes  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号