首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structure of silk fibroin from a wild silkworm, S. c. ricini, the amino acid sequence of which consists of repeated poly-Ala and Gly-rich regions, was examined by using solution and solid-state NMR methods. The structural transition of the silk fibroin in aqueous solution was monitored by using 13C solution NMR spectroscopy as a function of temperature. The fast exchange with respect to the chemical shift between the helix and coil conformations was observed in the poly-Ala region and the slow conformational change from alpha-helix to random coil was observed for the Gly residue adjacent to the N-terminal Ala residue of the poly-Ala region. The torsion angles of several Ala and Gly residues in the model peptide, GGAGGGYGGDGG(A)12GGA-GDGYGAG, were determined by the conformation-dependent 13C chemical shifts, rotational echo double resonance (REDOR) and 2D spin-diffusion NMR methods. The solid-state NMR analysis leads to the precise silk structure before spinning, where the poly-Ala sequence takes a typical alpha-helix pattern with a tightly winded helical structure at both terminal regions of the poly-Ala sequence. This is expected to stabilize the alpha-helical structure of the poly-Ala region in S. c. ricini silk fibroin from the silkworm.  相似文献   

2.
Elastin is an extracellular-matrix protein that imparts elasticity to tissues. We have used solid-state NMR to determine a number of distances and torsion angles in an elastin-mimetic peptide, (VPGVG)3, to understand the structural basis of elasticity. C-H and C-N distances between the V6 carbonyl and the V9 amide segment were measured using 13C-15N and 13C-1H rotational-echo double-resonance experiments. The results indicate the coexistence of two types of intramolecular distances: a third of the molecules have short C-H and C-N distances of 3.3 +/- 0.2 and 4.3 +/- 0.2 A, respectively, while the rest have longer distances of about 7 A. Complementing the distance constraints, we measured the (phi, psi ) torsion angles of the central pentameric unit using dipolar correlation NMR. The -angles of P7 and G8 are predominantly ~150, thus restricting the majority of the peptide to be extended. Combining all torsion angles measured for the five residues, the G8 C chemical shift, and the V6-V9 distances, we obtained a bimodal structure distribution for the PG residues in VPGVG. The minor form is a compact structure with a V6-V9 C=O-HN hydrogen bond and can be either a type II -turn or a previously unidentified turn with Pro (phi = -70, psi= 20 +/- 20) and Gly ( phi= -100 +/- 20, psi = -20 +/- 20). The major form is an extended and distorted beta-strand without a V6-V9 hydrogen bond and differs from the ideal parallel and antiparallel beta-strands. The other three residues in the VPGVG unit mainly adopt antiparallel beta-sheet torsion angles. Since (VPGVG)3 has the same 13C and 15N isotropic and anisotropic chemical shifts as the elastin-mimetic protein (VPGXG)n (X = V and K, n = 195), the observed conformational distribution around Pro and Gly sheds light on the molecular mechanism of elastin elasticity.  相似文献   

3.
We demonstrate constraint of peptide backbone and side-chain conformation with 3D (1)H-(15)N-(13)C-(1)H dipolar chemical shift, magic-angle spinning NMR experiments. In these experiments, polarization is transferred from (15)N[i] by ramped SPECIFIC cross polarization to the (13)C(alpha)[i], (13)C(beta)[i], and (13)C(alpha)[i - 1] resonances and evolves coherently under the correlated (1)H-(15)N and (1)H-(13)C dipolar couplings. The resulting set of frequency-labeled (15)N(1)H-(13)C(1)H dipolar spectra depend strongly upon the molecular torsion angles phi[i], chi1[i], and psi[i - 1]. To interpret the data with high precision, we considered the effects of weakly coupled protons and differential relaxation of proton coherences via an average Liouvillian theory formalism for multispin clusters and employed average Hamiltonian theory to describe the transfer of (15)N polarization to three coupled (13)C spins ((13)C(alpha)[i], (13)C(beta)[i], and (13)C(alpha)[i - 1]). Degeneracies in the conformational solution space were minimized by combining data from multiple (15)N(1)H-(13)C(1)H line shapes and analogous data from other 3D (1)H-(13)C(alpha)-(13)C(beta)-(1)H (chi1), (15)N-(13)C(alpha)-(13)C'-(15)N (psi), and (1)H-(15)N[i]-(15)N[i + 1]-(1)H (phi, psi) experiments. The method is demonstrated here with studies of the uniformly (13)C,(15)N-labeled solid tripeptide N-formyl-Met-Leu-Phe-OH, where the combined data constrains a total of eight torsion angles (three phi, three chi1, and two psi): phi(Met) = -146 degrees, psi(Met) = 159 degrees, chi1(Met) = -85 degrees, phi(Leu) = -90 degrees, psi(Leu) = -40 degrees, chi1(Leu) = -59 degrees, phi(Phe) = -166 degrees, and chi1(Phe) = 56 degrees. The high sensitivity and dynamic range of the 3D experiments and the data analysis methods provided here will permit immediate application to larger peptides and proteins when sufficient resolution is available in the (15)N-(13)C chemical shift correlation spectra.  相似文献   

4.
[1-13C]Gly, L-[1-13C]Ala, [15N]Gly, L-[15N]Ala, [2,2-2H2]Gly, L-[3,3-2H2]Ser and [3,3,3-2H3]Ala labeled silk fibroin fibers from Bombyx mori and Samia cynthia ricini silkworms were prepared in order to analyze structure of backbone and dynamics of side chain. The torsion angles ϕ and Ψ were determined from the angular dependent 13C and 15N solid state NMR spectra for uniaxially oriented fiber samples. In addition, the characteristic side chain dynamics of Ser residue determined from solid state 2H NMR measurements was compared with those of Ala and Gly residues.  相似文献   

5.
In this paper we describe solid-state NMR experiments that provide information on the structures of surface-immobilized peptides. The peptides are covalently bound to alkanethiolates that are self-assembled as monolayers on colloidal gold nanoparticles. The secondary structure of the immobilized peptides was characterized by quantifying the Ramachandran angles phi and psi. These angles were determined in turn from distances between backbone carbonyl 13C spins, measured with the double-quantum filtered dipolar recoupling with a windowless sequence experiment, and by determination of the mutual orientation of chemical shift anisotropy tensors of 13C carbonyl spins on adjacent peptide planes, obtained from the double-quantum cross-polarization magic-angle spinning spectrum. It was found that peptides composed of periodic sequences of leucines and lysines were bound along the length of the peptide sequence and displayed a tight alpha-helical secondary structure on the gold nanoparticles. These results are compared to similar studies of peptides immobilized on hydrophobic surfaces.  相似文献   

6.
The nuclear poly(A) binding protein PABPN1 possesses a natural 10 alanine stretch that can be extended to 17 Ala by codon expansion. The expansions are associated with the disease oculopharyngeal muscular dystrophy (OPMD), which is characterized histopathologically by intranuclear fibrillar deposits. Here, we have studied the Ala extended fibrillar N-terminal fragment of PABPN1, (N-(+7)Ala), comprising 152 amino acids. At natural abundance, cross-polarized 13C MAS NMR spectra are dominated by the three Ala signals with characteristic beta-sheet chemical shifts. In contrast, directly polarized 13C MAS spectra show a multitude of narrow lines, suggesting a large portion of highly mobile sites. Proteolytic cleavage of the protein combined with MALDI-TOF mass spectrometry revealed a protease-resistant peptide encompassing residues 13/14 to 50-52 with the poly-Ala stretch in the center. Measurements of the 1H-13Calpha dipolar couplings of 13C/15N-labeled N-(+7)Ala revealed high order parameters of 0.77 for the poly-Ala stretch of the fibril, while the majority of the residues of N-(+7)Ala exhibited very low order parameters between 0.06 and 0.15. Only some Gly residues that are flanking the Ala-rich region had significant order parameters of 0.47. Thus, site-specific dynamic mapping represents a useful tool to identify the topology of fibrillar proteins.  相似文献   

7.
Four types of polypeptide (1)J(C alpha X) couplings are examined, involving the main-chain carbon C(alpha) and either of four possible substituents. A total 3105 values of (1)J(C alpha H alpha), (1)J(C alpha C beta), (1)J(C alpha C'), and (1)J(C alpha N') were collected from six proteins, averaging 143.4 +/- 3.3, 34.9 +/- 2.5, 52.6 +/- 0.9, and 10.7 +/- 1.2 Hz, respectively. Analysis of variances (ANOVA) reveals a variety of factors impacting on (1)J and ranks their relative statistical significance and importance to biomolecular NMR structure refinement. Accordingly, the spread in the (1)J values is attributed, in equal proportions, to amino-acid specific substituent patterns and to polypeptide-chain geometry, specifically torsions phi, psi, and chi(1) circumjacent to C(alpha). The (1)J coupling constants correlate with protein secondary structure. For alpha-helical phi, psi combinations, (1)J(C alpha H alpha) is elevated by more than one standard deviation (147.8 Hz), while both (1)J(C alpha N') and (1)J(C alpha C beta) fall short of their grand means (9.5 and 33.7 Hz). Rare positive phi torsion angles in proteins exhibit concomitant small (1)J(C alpha H alpha) and (1)J(C alpha N') (138.4 and 9.6 Hz) and large (1)J(C alpha C beta) (39.9 Hz) values. The (1)J(C alpha N') coupling varies monotonously over the phi torsion range typical of beta-sheet secondary structure and is largest (13.3 Hz) for phi around -160 degrees. All four coupling types depend on psi and thus help determine a torsion that is notoriously difficult to assess by traditional approaches using (3)J. Influences on (1)J stemming from protein secondary structure and other factors, such as amino-acid composition, are largely independent.  相似文献   

8.
We report the experimental determination of the (13)C(alpha) chemical shift tensors of Ala, Leu, Val, Phe, and Met in a number of polycrystalline peptides with known X-ray or de novo solid-state NMR structures. The 700 Hz dipolar coupling between (13)C(alpha) and its directly bonded (14)N permits extraction of both the magnitude and the orientation of the shielding tensor with respect to the C(alpha)-N bond vector. The chemical shift anisotropy (CSA) is recoupled under magic-angle spinning using the SUPER technique (Liu et al., J. Magn. Reson. 2002, 155, 15-28) to yield quasi-static chemical shift powder patterns. The tensor orientation is extracted from the (13)C-(14)N dipolar modulation of the powder line shapes. The magnitudes and orientations of the experimental (13)C(alpha) chemical shift tensors are found to be in good accord with those predicted from quantum chemical calculations. Using these principal values and orientations, supplemented with previously measured tensor orientations from (13)C-(15)N and (13)C-(1)H dipolar experiments, we are able to predict the (phi, psi, chi(1)) angles of Ala and Val within 5.8 degrees of the crystallographic values. This opens up a route to accurate determination of torsion angles in proteins based on shielding tensor magnitude and orientation information using labeled compounds, as well as the structure elucidation of noncrystalline organic compounds using natural abundance (13)C NMR techniques.  相似文献   

9.
We demonstrate a solid-state nuclear magnetic resonance technique, with the acronym ROCSA-LG, for the determination of backbone torsion angles psi in peptides with multiple, but isolated, uniformly labeled residues. The method correlates the 13C' chemical shift anisotropy and the 13Calpha-1Halpha heteronuclear dipolar tensors within a single uniformly labeled residue in a two-dimensional (2D) experiment. The technique requires the measurement of only five 2D spectra and is compatible with high-speed magic-angle spinning. Experimental results are presented for the 17-residue alpha-helical peptide MB(i+4)EK and for amyloid fibrils formed by the 15-residue peptide Abeta11-25.  相似文献   

10.
The conformational preference of alpha-l-Rhap-(1-->2)[alpha-l-Rhap-(1-->3)]-alpha-l-Rhap-OMe in solution has been studied by NMR spectroscopy using one-dimensional (1)H,(1)H T-ROESY experiments and measurement of trans-glycosidic (3)J(C,H) coupling constants. Molecular dynamics (MD) simulations with a CHARMM22 type of force field modified for carbohydrates were performed with water as the explicit solvent. The homonuclear cross-relaxation rates, interpreted as effective proton-proton distances, were compared to those obtained from simulation. Via a Karplus torsional relationship, (3)J(C,H) values were calculated from simulation and compared to experimental data. Good agreement was observed between experimental data and the MD simulation, except for one inter-residue T-ROE between protons in the terminal sugar residues. The results show that the trisaccharide exhibits substantial conformational flexibility, in particular along the psi glycosidic torsion angles. Notably, for these torsions, a high degree of correlation (77%) was observed in the MD simulation revealing either psi(2)(+) psi(3)(+) or psi(2)(-)psi(3)(-) states. The simulations also showed that non-exoanomeric conformations were present at the phi torsion angles, but to a limited extent, with the phi(3) state populated to a larger extent than the phi(2) state. Further NMR analysis of the trisaccharide by translational diffusion measurements and (13)C T(1) relaxation experiments quantified global reorientation using an anisotropic model together with interpretation of the internal dynamics via the "model-free" approach. Fitting of the dynamically averaged states to experimental data showed that the psi(2)(+)psi(3)(+) state is present to approximately 49%, psi(2)(-) psi(3)(-) to approximately 39%, and phi(3) (non-exo) to approximately 12%. Finally, using a dynamic and population-averaged model, (1)H,(1)H T-ROE buildup curves were calculated using a full relaxation matrix approach and were found to be in excellent agreement with experimental data, in particular for the above inter-residue proton-proton interaction between the terminal residues.  相似文献   

11.
NMR and CD studies are reported for two length series of solubilized, spaced, highly helical polyalanines that are N-capped by the optimal helix stabilizer (beta)Asp-Hel and C-capped by beta-aminoalanine beta and that are studied in water at 2 degrees C, pH 1-8. NMR analysis yields a structural characterization of the peptide Ac(beta)AspHelAla(8)betaNH(2) and selected members of one (beta)AspHelAla(n)beta series. At pH > 4.5 the (beta)AspHel cap provides a preorganized triad of carboxylate anion and two amide residues that is complementary to the helical polyalanine N-terminus. The C-terminal beta-aminoalanine assumes a helix-stabilizing conformation consistent with literature precedents. H(N)CO NMR experiments applied to capped, uniformly (13)C- and (15)N-labeled Ala(8) and Ala(12) peptides define Ala(n) hydrogen bonding signatures as alpha-helical without detectable 3(10) character. Relative NH-->ND exchange rates yield site protection factors PF(i) that define uniquely high fractional helicities FH for the peptide Ala(n) regions. These Ala(n) calibration series, studied in water and lacking helix-stabilizing tertiary structure, yield the first (13)C NMR chemical shifts, (3)J(HNH)(alpha) coupling constants, and CD ellipticities [theta(Molar)](lambda,n) characteristic of a fully helical alanine within an Ala(n) context. CD data are used to assign parameters X and [theta](lambda,infinity), required for rigorous calculation of FH values from CD ellipticities.  相似文献   

12.
The conformational transformation of a 30-residue peptide H(Ala-Gly-Ser-Gly-AIa-Gly)5OH, i.e., (AGSGAG)5, extracted from highly crystalline region of Bombyx mori (B. mori) silk fibroin was described by using the high resolution solid state 13^C NMR, and CD spectroscopies. Based on the conformation-dependent 13^C NMR chemical shifts of the Ala, Gly and Ser residues and the line-shape analysis of the conformation sensitive Ala Cβ resonance, the peptide revealed a strong preference for silk Ⅱ structural form, i,e,, an antiparallel fl-sheet structure (φ= - 140±20°and ψ= 135±20°) in solid state. On the contrary, the CD spectra of this peptide in the two non-native hexafluorinated fibre spinning solvents, hexafluoroisopropanol (HFIP) and hexafluoroacetone (HFA), exhibited the existence of an unusual tightly-folded conformation resembling 310-helix (φ=- 60±20° and ψ=-30±20°), as judged from the R ratio of [θ]222/[θ]203 in HFIP solution, whereas a dynamically averaged unordered structure in HFA, Taken together, the information inclined to hypothesis that the primary structure of the highly crystalline regions of B. mori silk fibroin may be easily accessible to the large conformational changes, which in turn may be critical for facilitating the structural transformation from unprocessed silk fibroin (silk I form) to processed silk fiber (silk Ⅱform).  相似文献   

13.
A microcoil probehead for solid-state NMR was developed with a two-channel radio-frequency circuit, and 13C observation with a proton-decoupling probehead was performed to obtain information on the distribution of the orientation of silk fibroin molecules in the fiber. The coil (1 mm (diameter) x 5 mm (length)) of the probehead was placed at the angles 90 degrees and 30 degrees , relative to the static magnetic field. Only 70 mug of [1-13C]Gly silk fibroin fiber was used in a magnet of 9.4 T (400 MHz for proton channel).  相似文献   

14.
桑蚕丝素-RGD融合蛋白的固态结构及其细胞粘附性分析   总被引:4,自引:0,他引:4  
姚菊明  祝永强  李媛  励丽 《化学学报》2006,64(12):1273-1278
利用基因工程方法把含有短肽RGD的氨基酸序列连接到桑蚕丝素蛋白的结晶序列GAGAGS上, 通过调节DNA的聚合度, 合成了具有[TGRGDSPA(GVPGV)2GG(GAGAGS)3AS]n一级结构、不同分子量大小的桑蚕丝素-RGD融合蛋白, 并且通过在M9培养基中添加[3-13C]Ala的方法进行融合蛋白的稳定同位素标记. 13C CP/MAS NMR结果显示, 融合蛋白中的GAGAGS部分具有与天然桑蚕丝素结晶部分相同的分子结构, 即Silk I处理后为均一的分子结构, 而Silk II处理后为不均一的分子结构, 它包含了三种不同的结构成分. 另一方面, 通过对小鼠成纤维细胞BALB/3T3在不同蛋白材料载体上的粘附和增殖性能的测定结果显示, 融合蛋白对细胞的增殖性能与天然胶原蛋白相近, 但表现出了比胶原蛋白更好的细胞粘附性能. 该研究结果显示, 如果对该桑蚕丝素-RGD融合蛋白进行适当加工, 可能适合于组织工程支架材料的应用.  相似文献   

15.
Lamellar structure of poly(Ala-Gly) or (AG)n in the solid was examined using 13C solid-state NMR and statistical mechanical approaches. Two doubly labeled versions, [1-13C]Gly14[1-13C]Ala15- and [1-13C]Gly18[1-13C]Ala19 of (AG)15 were examined by two-dimensional (2D) 13C spin diffusion NMR in the solid state. In addition five doubly labeled [15N,13C]-versions of the same peptide, (AG) 15 and 15 versions labeled [3-13C] in each of the successive Ala residues were utilized for REDOR and 13C CP/MAS NMR measurements, respectively. The observed spin diffusion NMR spectra were consistent with a structure containing a combination of distorted beta-turns with a large distribution of the torsion angles and antiparallel beta-sheets. The relative proportion of the distorted beta-turn form was evaluated by examination of 13C CP/MAS NMR spectra of [3-13C]Ala-(AG)15. In addition, REDOR determinations showed five kinds of atomic distances between doubly labeled 13C and 15N nuclei which were also interpreted in terms of a combination of beta-sheets and beta-turns. Our statistical mechanical analysis is in excellent agreement with our Ala Cbeta 13C CP/MAS NMR data strongly suggesting that (AG)15 has a lamellar structure.  相似文献   

16.
Currently, several energy functions and conformational search methods have been developed that are based on the observed distribution of phi and psi angles in protein structures. The definition of phi and psi angles is directly related to the orientation of the peptide plane (CA CO NH CA). Starting from one conformation and rotating a single peptide plane, the angles psi for one residue and phi for the consecutive residue that are linked by the peptide plane, display a continuous range of values within one global conformation. When peptide plane rotation is analyzed in several different conformations generated from a restricted conformation database, a large number of these conformations are related. Based on these observations, a new simplified all-atom representation for protein folding simulations is presented where only one torsion angle variable is required for each residue. The underlying theme of this article is that conformational search methods using phi and psi torsion space, search through many redundant conformations. These conformations are related by anticorrelated torsion changes of peptide plane rotations. ©1999 John Wiley & Sons, Inc. J Comput Chem 20: 947–955, 1999  相似文献   

17.
To investigate the chemical conformations and functions of the -Phe-Phe-Val- or -Phe-Phe- sequences contained in the Alzheimer's disease related beta-amyloid peptide, a series of mini parallel double-stranded peptides conjugated with two peptide residues to one spacer were designed and prepared. The structure of the compounds was elucidated by circular dichroism (CD) spectrum and NMR two dimensional (2D) nuclear Overhauser enhancement and exchange spectroscopy (NOESY) measurments. The structure of 1,2-ethano-bis(L-Phe-L-Phe-L-Leu), 1,12-dodecano-bis(L-Phe-L-Phe-L-Leu), 1,12-dodecano-bis(L-Phe-L-Phe-L-Val), and 1,12-dodecano (D-Phe-D-Phe-D-Leu) conjugated with L-Leu and L-Val residues show a beta-turn-like nucleation. The dihedral angles (theta = +75 degrees, omega = +180 degrees, phi = +90 degrees, phi = -87 degrees, psi = +180 degrees) obtained from experimental coupling constant (J) data, etc. support that 1,12-dodecano-bis(L-Phe-L-Phe) adopts beta-turn mimic nucleation. The 1,12-dodecano- bis(L-Leu-L-Leu-L-Phe), 1,12-dodecano-bis(L-lle-L-Phe-L-Leu), and 1,12-dodecano-bis(L-Phe-L-Val-L-Leu), etc. adopt most probably a random structure by CD studies. It was found by titration spectrum that an inclusion complex of 1:1 ratio (association constant; azobenzene (guest, Ka=1.0 x 10(4)M-1) is formed between 1,12-dodecano-bis(L.-Phe-L-Phe-L-Leu) and [L0]=1.758 x 10(-5)M-1). Moreover, the stability of the complexes was increased in order of 1,12-dodecano-bis(L-Phe-L-Phe-L-Leu) x azobenzene> 1,12-dodecano-bis(L-Phe-L-Phe-L-Val) x azobenzene> 1,12-dodecano-bis(L-Phe-L-Val-L-Leu) azobenzene. The data show that X-Phe-L-Phe-L-spacer(S)-L-Phe-L-Phe-X (X=amino acids; S = 1,2-ethano- and 1,12-dodecano-) plays an important role as a binding site of the artificial receptor. The hydrophobic interaction of the four Phes in the two strands is a very interesting issue in the physiological action of proteins as well as the conformation of the backbone of X-L-Phe-L-Phe-spacer(S)-iL-Phe-l.-Phe-X.  相似文献   

18.
Chemical shielding anisotropy tensors have been determined for all twenty-seven characteristic conformers of For-L-Val-NH2 using the GIAO-RHF formalism with the 6-31 + G* and TZ2P basis sets. The individual chemical shifts and their conformational averages have been compared to their experimental counterparts taken from the BioMagnetic Resonance Bank (BMRB). At the highest level of theory applied, for all nuclei but the amide proton, deviations between statistically averaged theoretical and experimental chemical shifts are as low as 1-3%. Correlated chemical shift plots of selected nuclei, as function of the respective phi, psi, chi1, and chi2 torsional angles, have been generated. On two-dimensional chemical shift-chemical shift plots, for example, 1H(NH)-15N(NH) and 15N(NH)-13Calpha, regions corresponding to major conformational clusters have been identified, providing a basis for the quantitative identification of conformers from NMR shift data. Experimental NMR resonances of nuclei of valine residues have been deduced from 18 selected proteins, resulting in 93 1Halpha-13Calpha chemical shift pairs. These experimental results have been compared to relevant ab initio values revealing remarkable correlation between the two sets of data. Correlations of 1Halpha and 13Calpha values with backbone conformational parameters (phi and psi) have also been found for all pairs (e.g. 1Halpha/phi and 13Calpha/phi) but 1Halpha/psi. Overall, the appealing idea of establishing backbone folding of proteins by employing chemical shift information alone, obtained from selected multiple-pulse NMR experiments (e.g. 2D-HSQC, 2D-HMQC, and 3D-HNCA), has received further support.  相似文献   

19.
Knowledge of chemical shift-structure relationships could greatly facilitate the NMR chemical shift assignment and structure refinement processes that occur during peptide/protein structure determination via NMR spectroscopy. To determine whether such correlations exist for polar side chain containing amino acid residues the serine dipeptide model, For-L-Ser-NH(2), was studied. Using the GIAO-RHF/6-31+G(d) and GIAO-RHF/TZ2P levels of theory the NMR chemical shifts of all hydrogen ((1)H(N), (1)H(alpha), (1)H(beta1), (1)H(beta2)), carbon ((13)C(alpha), (13)C(beta), (13)C') and nitrogen ((15)N) atoms have been computed for all 44 stable conformers of For-L-Ser-NH(2). An attempt was made to establish correlation between chemical shift of each nucleus and the major conformational variables (omega(0), phi, psi, omega(1), chi,(1) and chi(2)). At both levels of theory a linear correlation can be observed between (1)H(alpha)/phi, (13)C(alpha)/phi, and (13)C(alpha)/psi. These results indicate that the backbone and side-chain structures of For-L-Ser-NH(2) have a strong influence on its chemical shifts.  相似文献   

20.
The phi,psi backbone angle distribution of small homopolymeric model peptides is investigated by a joint molecular dynamics (MD) simulation and heteronuclear NMR study. Combining the accuracy of the measured scalar coupling constants and the atomistic detail of the all-atom MD simulations with explicit solvent, the thermal populations of the peptide conformational states are determined with an uncertainty of <5 %. Trialanine samples mainly ( approximately 90%) a poly-l-proline II helix-like structure, some ( approximately 10%) beta extended structure, but no alphaR helical conformations. No significant change in the distribution of conformers is observed with increasing chain length (Ala(3) to Ala(7)). Trivaline samples all three major conformations significantly. Triglycine samples the four corner regions of the Ramachandran space and exists in a slow conformational equilibrium between the cis and trans conformation of peptide bonds. The backbone angle distribution was also studied for the segment Ala3 surrounded by either three or eight amino acids on both N- and C-termini from a sequence derived from the protein hen egg white lysozyme. While the conformational distribution of the central three alanine residues in the 9mer is similar to that for the small peptides Ala(3)-Ala(7), major differences are found for the 19mer, which significantly (30-40%) samples alphaR helical stuctures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号