首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The systematics of the plasmon response in spherical K, Na and Li clusters in a wide size region is studied. Two simplifying approximations whose validity has been established previously are considered: (a) a separable approach to the random-phase-approximation, involving an expansion of the residual interaction into a sum of separable terms, (b) the electron-ion interaction is modeled within the pseudo-Hamiltonian jellium model (PHJM) including nonlocal effects by means of realistic atomic pseudoHamiltonians. In cases where nonlocal effects turn out to be negligible, the Structure Averaged Jellium Model (SAJM) has been used. The leading role of Landau damping in forming the plasmon width in medium and large clusters is demonstrated. Good agreement with available experimental data is achieved for K, Na (using the SAJM) and small Li clusters (invoking the PHJM). The trends for peak position and width are generally well reproduced, even up to details of the Landau fragmentation in several clusters. Less good agreement, however, is found for large Li clusters. The possible reasons of the discrepancy are discussed. Received: 22 April 1998 / Accepted: 24 July 1998  相似文献   

3.
Ionization of metal clusters by ions in the Fermi velocity range   总被引:1,自引:0,他引:1  
We simulate excitation of metal clusters by highly charged, energetic ions, analyzing electron emission in terms of discrete ionization probabilities. Our test case is the collision of on the cluster at velocities around the electronic Fermi velocity of bulk sodium. The calculations are performed with a density-functional approach, using the time-dependent local density approximation. We find that ionization takes place on an extremely short time scale of less than 5 fs. The preferred final charge state depends sensitively on the impact parameter. High ionization can easily be achieved in sufficiently close collisions. Direct trapping through the by-passing ion is found to be of little importance at the velocities considered. Received: 28 July 1997 / Received in final form: 23 December 1997 / Accepted: 8 January 1998  相似文献   

4.
The electronic temperature dependence of the optical absorption of silver nanoparticles is investigated in the framework of the time-dependent local-density approximation at finite temperature. Below the spectral region of interband transitions, we have found that the electronic temperature leads to a broadening and spectral shift of the surface plasmon resonance. The calculated differential transmission is in good agreement with recent experimental measurements obtained with time resolved pump-probe techniques.  相似文献   

5.
A simple formula for correlation energy Ec of the π electron systems is obtained under an approximation for the electron-electron interactions. This formula is related directly to square of the bond order matrix and the nearest-neighbor Coulomb electron-electron interaction. The influence of the correlation energy on the band energy gap is discussed. The values of the correlation energy for polyacetylene (PA) are calculated and can be compared with those for PA obtained by other methods, including ab initio method.  相似文献   

6.
We investigate spin modes in the ground state and the polarized first isomer of the Na12 cluster describing the valence electrons in time-dependent local-spin-density approximation (TDLSDA) and the detailed ionic background using local pseudopotentials. The spin modes show a collective redshift compared to the unperturbed particle-hole excitations. They are strongly fragmented and the average energy of the modes along the principal axes are related to the underlying geometry (triaxial or axially symmetric). For the polarized isomer, we find significant cross talk between the spin modes and the dipole plasmon, which hints at a possible spectroscopic identification. Received: 22 June 1998 / Accepted: 29 July 1998  相似文献   

7.
By comparing quantal and semi-classical calculations of optical response, we work out the part of the splitting of the plasmon spectra which is exclusively due to geometrical effects. We apply the analysis to the test case which exhibits an interesting geometry with strong prolate quadrupole deformation and a pronounced asymmetry in addition. We find a new type of resonance splitting which is due to geometrical effects but goes beyond the simple and well known deformation splitting. Received: 6 April 1998 / Accepted: 24 April 1998  相似文献   

8.
9.
Recent experimental data on the dipole plasmon in axial sodium clusters Na N + with 11 ≤ N ≤ 57 are analyzed within a self-consistent separable random-phase approximation (SRPA) based on the deformed Konh-Sham functional. Good agreement with the data is achieved. The calculations show that, while in light clusters plasmon properties (gross structure and width) are determined mainly by deformation splitting, in medium clusters with N τ 50 the Landau fragmentation becomes decisive. Moreover, in medium clusters shape isomers come to play with contributions to the plasmon comparable with the ground state one. As a result, commonly used methods of the experimental analysis of cluster deformation become useless and correct treatment of cluster shape requires microscopic calculations.  相似文献   

10.
11.
We present a first-principles pseudopotential optimization of the lower energy equilibrium structure of SinSc- anions for n=14-18. We find that Si16Sc- is more stable than its neighbors clusters, in agreement with recent experimental mass spectra. We also optimize the geometry of pure Sin neutral clusters in the range n=14-18, and compare our results with those from previous first-principles calculations.  相似文献   

12.
We make a theoretical study of the shake-up of the 1s photoemission of C60. The method takes into account the N-body reactions of the π and σ electrons which appear during the formation of the photoemission hole on one carbon atom. We analyze the origin of the satellite in the spectra due to transitions between N-body states. Our calculation shows that the satellite spectra is essentially given by N-body transitions which involve the creation of one or two electron-hole pairs. The method has been applied also to C48N12. The situation is more complex. The spectra of the two most stable species have been investigated. Moreover the influence on the spectra of the position of the hole created on the carbon atom in C48N12 has been examined (all the carbon positions are not equivalent for some isomers).  相似文献   

13.
We investigate the dynamical evolution of a Na8 cluster embedded in Ar matrices of various sizes from N=30 to 1048. The system is excited by an intense short laser pulse leading to high ionization stages.We analyze the subsequent highly non-linear motion of cluster and Ar environment in terms of trajectories, shapes, and energy flow. The most prominent effects are: temporary stabilization of high charge states for several ps, sudden stopping of the Coulomb explosion of the embedded Na8 clusters associated with an extremely fast energy transfer to the Ar matrix, fast distribution of energy throughout the Ar layers by a sound wave. Other ionic-atomic transfer and relaxation processes proceed at slower scale of few ps. The electron cloud is almost thermally decoupled from ions and thermalizes far beyond the ps scale.  相似文献   

14.
The influence of doping of Li-clusters by electronegative O and C atoms on the ionization potentials was investigated. Experimentally, we report ionization potentials for bare Lin clusters deduced from photoionization efficiency spectra. The values are compared with the results for LinO and LinC clusters. Observed differences are largely attributed to a quantum size effect caused by the segregated molecular part around the impurity, which changes the electron work function. Theoretically, the Fermi and exchange-correlation energies which enter the work function, are calculated in the frame of the augmented plane wave (APW) method by taking explicitly into account the presence of the molecular core. The other contribution to the work function, the moment of the double layer at the cluster surface, is computed by solving the corresponding Poisson's equation. Received 9 September 1999 and Received in final form 7 February 2000  相似文献   

15.
The effect of melting transition on the ionization potential has been studied for sodium clusters with 40, 55, 142, and 147 atoms, using ab initio and classical molecular dynamics. Classical and ab initio simulations were performed to determine the ionization potential of Na142 and Na147 for solid, partly melted, and liquid structures. The results reveal no correlation between the vertical ionization potential and the degree of surface disorder, melting, or the total energy of the cluster obtained with the ab initio method. However, in the case of 40 and 55 atom clusters, the ionization potential seems to decrease when the cluster melts. Received 1st November 2002 Published online 24 April 2003 RID="a" ID="a"e-mail: ar@phys.jyu.fi  相似文献   

16.
With the help of ab initio methods the clusters [(MgO)13Mg] Q+ are simulated for Q = 0, 1, 2. Then, vacancy clusters [(MgO)12Mg2] Q+ obtained by removing one oxygen atom are computed for Q running from 0 to 4. These clusters exhibit a slight sphericity and generally shorter interatomic distances than in the crystal. The electronic densities variations are studied in function of Q. In particular, it is observed that the electronic density in the oxygen vacancy goes to a maximum when Q = 2. The ionisation potentials vary from approximately 4 to 14 eV when Q varies from 0 to 3, with a more rapid increase from Q = 1 to Q = 2. The stability study of vacancy clusters show that they experience a phase transition when their charge becomes equal to 2, in accordance with the features mentioned above. Received 14 September 1999 and Received in final form 2 December 1999  相似文献   

17.
We present a theoretical and computational study of the properties and the response of the nanoplasma and of outer ionization in Xen clusters (n = 55–2171, initial cluster radius R0 = 8.7–31.0 ?) driven by ultraintense near-infrared laser fields (peak intensity IM = 1015–1020 Wcm-2, temporal pulse length τ= 10–100 fs, and frequency ν= 0.35 fs-1). The positively charged high-energy nanoplasma produced by inner ionization nearly follows the oscillations of the fs laser pulse and can either be persistent (at lower intensities of IM = 1015–1016 Wcm-2 and/or for larger cluster sizes, where the electron energy distribution is nearly thermal) or transient (at higher intensities of IM = 1018–1020 Wcm-2 and/or for smaller cluster sizes). The nanoplasma is depleted by outer ionization that was semiquantitatively described by the cluster barrier suppression electrostatic model, which accounts for the cluster size, laser intensity and pulse length dependence of the outer ionization yield. The electrostatic model was further utilized for estimates of the laser intensity and pulse width dependence of the border radius R0 (I) for the attainment of complete outer ionization at , while at R0 > R0 (I) a persistent nanoplasma prevails. R0 (I) establishes an interrelationship between electron dynamics and nuclear Coulomb explosion dynamics in ultraintense laser-cluster interactions.  相似文献   

18.
We analyze the stability of magnetic states obtained within the tight-binding model for cubooctahedral (Oh) and icosahedral (Ih) clusters of early 4d (Y, Zr, Nb, Mo, and Tc) transition metals. Several metastable magnetic clusters are identified which suggests the existence of multiple magnetic solutions in realistic systems. A bulk-like parabolic behavior is observed for the binding energy of Oh and Ih clusters as a function of the atomic number along the 4 d-series. The charge transfer on the central atom changes sign, while the average magnetic moments present an oscillatory behavior as a function of the number of d electrons in the cluster. Our results are in agreement with other theoretical calculations. Received: 20 November 1997 / Received in final form: 9 March 1998 / Accepted: 30 March 1998  相似文献   

19.
The electronic and geometric structures and photodissociation dynamics of the chromium trimer ion, Cr3 +, were investigated by photodissociation spectroscopy in the photon-energy range from 1.32 to 5.52 eV. The branching fractions of the product ions, Cr+ and Cr2 +, exhibit stepwise changes at the threshold energies for dissociation into Cr++Cr2, Cr+Cr2 +, Cr++2Cr, and Cr*+Cr2 +. It is noted that Cr2 + is produced even above the threshold for atomization; the excess energy is redistributed to produce a fragment atom, Cr*, in an excited state. The photodissociation action spectrum is well explained by a mixture of simulated spectra for two nearly-degenerate structural isomers identified by density functional calculations: those having a metastable C2v structure and the most stable structure slightly distorted from the C2v one. The barrier height between the two isomers which is lower than the zero-point energy suggests that Cr3 + has an intrinsically floppy structure.  相似文献   

20.
We have studied experimentally the collisional charge transfer between a neutral atom and a multicharged metal-atom cluster. The charge transfer cross section measured for Na 31 + + + Cs is in the range of 400 ?2. The time-of-flight mass analysis of the singly charged collision products demonstrates that an energy of about 0.5 eV is deposited in the cluster fragment during the charge transfer collision. This effect can be interpreted as a charge transfer to an excited state of the metal cluster. The measured cross section for Na 31 + + + Cs is larger than the one for Na 31 + + Cs collisions. This difference between these two systems is due to the existence, for the first one, of a Coulombic repulsion term in the collision output channel. Received 24 October 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号