首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
meso-Tetrakis(p-tolyl)porphyrinatoruthenium(II) carbonyl, [Ru(II)(TTP)(CO)], can effect intermolecular sulfonium and ammonium ylide formation by catalytic decomposition of diazo compounds such as ethyl diazoacetate (EDA) in the presence of allyl sulfides and amines. Exclusive formation of [2,3]-sigmatropic rearrangement products (70-80% yields) was observed without [1,2]-rearrangement products being detected. The Ru-catalyzed reaction of EDA with disubstituted allyl sulfides such as crotyl sulfide produced an equimolar mixture of anti- and syn-2-(ethylthio)-3-methyl-4-pentenoic acid ethyl ester. The analogous "EDA + N,N-dimethylcrotylamine" reaction afforded a mixture of anti- and syn-2-(N,N-dimethylamino)-3-methyl-4-pentenoic acid ethyl esters with a diastereoselectivity of 3:1. The observed catalytic activity of [Ru(II)(TTP)(CO)] for the ylide [2,3]-sigmatropic rearrangement is comparable to the reported examples involving [Rh(2)(CH(3)CO(2))(4)] and [Cu(acac)(2)] as catalyst. Similarly, cyclic sulfonium and ammonium ylides can be produced by intramolecular reaction of a diazo group tethered to allyl sulfides and amines under the [Ru(II)(TTP)(CO)]-catalyzed reaction conditions. The subsequent [2,3]-sigmatropic rearrangement of the cyclic ylides furnished 2-allyl-substituted sulfur and nitrogen heterocycles in good yields (>90%). By employing [Ru(II)(TTP)(CO)] as catalyst, the cyclic ammonium ylide [2,3]-sigmatropic rearrangement reaction was successfully applied for the total synthesis of (+/-)-platynecine starting from cis-2-butenediol.  相似文献   

2.
The iron(II)-catalyzed Bach reaction of tert-butoxycarbonyl azide (BocN(3)) and allyl sulfides has been extended to include propargyl sulfides, which give N-allenylsulfenimide products. Using 10 mol % dppeFeCl(2) as catalyst the reaction proceeds at 0 degrees C with a number of different propargyl sulfides in 31-73% isolated yield. The reaction is limited by product instability toward catalyst and termination of the catalytic cycle by excess BocN(3). N-Allenylsulfenimide 2b smoothly undergoes catalytic hydrogenation and a Diels-Alder reaction with cyclopentadiene.  相似文献   

3.
A convenient and selective catalytic method for the sulfoxidation of aliphatic and aromatic sulfides by treatment of NH4NO3, silica sulfuric acid, wet SiO2 (50% w/w) and a catalytic amount of KBr in CH2Cl2 at room temperature was developed. Many sulfides can be selectively oxidized at room temperature in good to excellent yields. The reaction proceeds without over-oxidation to sulfones under mild conditions.  相似文献   

4.
We have developed two simple and high yielding one-pot syntheses of alkyl aminoaryl sulfides containing a series of four-steps: in situ protection of the free amine by reaction with a Grignard reagent, halogen-lithium exchange, sulfur insertion, and a substitution reaction with various electrophiles. Through this protocol, we have successfully synthesized tert-butyl-2-[4-(2-aminoethyl)phenylsulfanyl]-2-methylpropanoate, a key intermediate for the synthesis of GW7647 and GW9578 (ureido-TiBAs), in 92% yield. Furthermore, we were able to improve the overall yield of GW7647 to 66%, 3 times the yield previously reported.  相似文献   

5.
Palladium-catalyzed electrophilic allylic substitution of functionalized allyl chlorides and allyl acetates can be achieved in the presence of hexamethylditin under mild and neutral reaction conditions. This efficient one-pot procedure involves palladium-catalyzed formation of transient allylstannanes followed by generation of a bis-allylpalladium intermediate, which subsequently reacts with electrophiles. Using this catalytic transformation, various aldehydes and imines can be allylated providing highly functionalized homoallyl alcohols and amines. Furthermore, tandem bis-allylation reactions could be performed by employing tosyl isocyanate and benzylidenemalonitrile as substrates. A particularly interesting mechanistic feature of this reaction is that palladium catalyzes up to three different transformations in each catalytic cycle. Various allylic functionalities, including COOEt, CONH(2), COCH(3), CN, Ph, and CH(3), are tolerated in the catalytic reactions due to the application of neutral and mild reaction conditions. The substitution reaction occurs with very high regioselectivity at the branched allylic terminus. Moreover, in several reactions, a high stereoselectivity was observed indicating that this new catalytic process has a high potential for stereoselective synthesis. The regioselectivity of the reaction can be explained on the basis of DFT calculations. These studies indicate that the allylic substituent prefers the gamma-position of the eta(1)-allyl moiety of the reaction intermediate.  相似文献   

6.
In spite of the several experimental and computational studies on the thermal decomposition of allyl ethers and allyl sulfides, there are still disagreements on aspects of the reaction mechanism, such as the true nature of the transition states and the grade of synchronicity of the reactions. This work presents a computational study of the gas-phase thermolysis reaction of allyl ethers and allyl sulfides substituted at α-carbon, at the M05-2X/6-31+G(d,p) level of theory and a temperature range from 586.15 to 673.15 K. The substituent groups were methyl, ethyl, n-propyl, i-propyl, allyl, benzyl and acetonyl. It was found that the sulfides react faster than the homologous ethers and that the substituent groups with the capacity of delocalize charge increase the reaction rate. Through natural bond orbital calculations, the transition states were characterized. The synchronicities and atomic charges of the studied reactions were determined. A computational study at the G3 level of theory on the thermochemistry of allyl ethers and sulfides was also carried out.  相似文献   

7.
Reaction pathways of the Simmons-Smith reaction   总被引:1,自引:0,他引:1  
The cyclopropanation reaction of an alkene with a metal carbenoid has been studied by means of the B3LYP hybrid density functional method. The cyclopropanation of ethylene with a lithium carbenoid or a zinc carbenoid [Simmons-Smith (SS) reagent] goes through two competing pathways, methylene transfer and carbometalation. Both processes are fast for the lithium carbenoid, while, for the zinc carbenoid, only the former is fast enough to be experimentally feasible. The reaction of an SS reagent (ClZnCH(2)Cl) with ethylene and an allyl alcohol in the presence of ZnCl(2) was also studied. The allyl alcohol reaction was modeled with an SS reagent/alkoxide complex (ClCH(2)ZnOCH(2)CH=CH(2)) formed from the SS reagent and allyl alcohol. Two modes of acceleration were found. The first involves the well-accepted mechanism of 1,2-chlorine migration, and the second involves a five-centered bond alternation. The latter was found to be more facile than the former and to operate equally well both with ethylene and with aggregates of SS reagent/alkoxide complexes. Calculations on the SS reaction with 2-cyclohexen-1-ol offer a reasonable model for the hydroxy-directed diastereoselective SS reaction, which has been used for a long time in organic synthesis.  相似文献   

8.
Iridium complex-catalyzed allylic amination of allylic esters   总被引:1,自引:0,他引:1  
Iridium complex-catalyzed allylic amination of allylic carbonates was studied. The solvent strongly affected the catalytic activity. The use of a polar solvent such as EtOH is essential for obtaining the products in high yield. The reaction of (E)-3-substituted-2-propenyl carbonate and 1-substituted-2-propenyl carbonate with pyrrolidine in the presence of a catalytic amount of [Ir(COD)Cl](2) and P(OPh)(3) (P/Ir = 2) gave a branch amine with up to 99% selectivity. Both secondary and primary amines could be used for this reaction. When a primary amine was used, selective monoallylation occurred. No diallylation product was obtained. The reaction of 1,1-disubstituted-2-propenyl acetate with amines exclusively gave an alpha,alpha-disubstituted allylic amine. This reaction provides an alternative route to the addition of an organometallic reagent to ketimines for the preparation of such amines. The reaction of (Z)-3-substituted-2-propenyl carbonate with amines gave (Z)-linear amines with up to 100% selectivity. In all cases, no (E)-linear amine was obtained. The selectivities described here have not been achieved in similar palladium complex-catalyzed reactions.  相似文献   

9.
The platinum-catalyzed allylation of amines with allyl alcohols was studied experimentally and theoretically. The complexes [Pt(eta(3)-allyl)(dppe)]OTf (2) and [Pt(eta(3)-allyl)(DPP-Xantphos)]PF(6) (5) were synthesized and structurally characterized, and their reactivity toward amines was explored. The bicyclic aminopropyl complex [Pt(CH(2)CH(2)CH(2)NHBn-kappa-C,N)(dppe)]OTf (3) was obtained from the reaction of complex 2 with an excess of benzylamine, and this complex was shown to be a deactivated form of catalyst 2. On the other hand, reaction of complex 5 with benzylamine and allyl alcohol led to formation of the 16-VE platinum(0) complex [Pt(eta(2)-C(3)H(5)OH)(DPP-Xantphos)] (7), which was structurally characterized and appears to be a catalytic intermediate. A DFT study showed that the mechanism of the platinum-catalyzed allylation of amines with allyl alcohols differs from the palladium-catalyzed process, since it involves an associative ligand-exchange step involving formation of a tetracoordinate 18-VE complex. This DFT study also revealed that ligands with large bite angles disfavor the formation of platinum hydride complexes and therefore the formation of a bicyclic aminopropyl complex, which is a thermodynamic sink. Finally, a combination of 5 and a proton source was shown to efficiently catalyze the allylation of a broad variety of amines with allyl alcohols under mild conditions.  相似文献   

10.
At atmospheric pressure and at 130-160 degrees C, primary aromatic amines (p-XC6H4NH2, X = H, Cl, NO2) are mono-N-alkylated in a single step, with symmetrical and asymmetrical dialkyl carbonates [ROCOOR', R = Me, R' = MeO(CH2)2O(CH2)2; R = R' = Et; R = R' = benzyl; R = R' = allyl; R = Et, R' = MeO(CH2)2O(CH2)2], in the presence of a commercially available NaY faujasite. No solvents are required. Mono-N-alkyl anilines are obtained with a very high selectivity (90-97%), in good to excellent yields (68-94%), on a preparative scale. In the presence of triglyme as a solvent, the mono-N-alkyl selectivity is independent of concentration and polarity factors. The reaction probably takes place within the polar zeolite cavities, and through the combined effect of the dual acid-base properties of the catalyst.  相似文献   

11.
Traditional preparation of sulfenamides require the use of low oxidation state of sulfur reagent such as RSCl, (RS)2 or RSH, which are toxic, odorous and difficult to deal with due to the harsh reaction conditions. Here high oxidation state of sulfur reagent—aliphatic sulfinamide, were used for preparation of sulfenamide in one step efficiently. Different aromatic amines with all sorts of functional groups, especially amino groups and hydroxyl groups, were transformed to the corresponding sulfenamides in moderate yields, which was difficult to obtain with previous methods.  相似文献   

12.
The combination of H(3)[PW(12)O(40)]·nH(2)O (1 mol %) and Et(3)SiH led to the direct catalytic deoxygenation of propargyl alcohols, in which proper solvent selection Cl(CH(2))(2)Cl vs CF(3)CH(2)OH was the key to obtaining better product yields. Under similar conditions, the deoxygenation of allyl alcohols proceeded to give thermodynamically stable alkenes with migration of the double bonds in good yields.  相似文献   

13.
The photochemistry of 11 substituted allyl 4-X- and 3-X-aryl ethers 3 (ArOCH2-CH=CH2) has been examined in both methanol and cyclohexane as solvents. The ethers react by the photo-Claisen rearrangement to give allyl substituted phenols as the major primary photoproducts, as expected from the well-established radical pair mechanism. The excited singlet state properties (absorption spectra, fluorescence spectra, fluorescence quantum yields, and singlet lifetimes) were compared with a parallel set of unreactive 4-X- and 3-X-anisoles 4. The excited-state properties of three substituted 4-X-aryl 4-(1-butenyl) ethers 14 (ArOCH2CH2-CH=CH2) were also examined. The model compounds 4 and the reactive allyl ethers 3 have essentially identical rate constants for the excited-state processes with the exception of, the rate constant for homolytic cleavage from S(1) of the allyl ethers to give the radical pair. The difference between the fluorescence quantum yields and/or singlet lifetimes for 3 and 4 were used to obtain values of for all of the allyl ethers. These values exhibit a large substituent effect, spanning almost 2 orders of magnitude with electron-donating groups (CH3O, CH3) accelerating the reaction and electron-withdrawing ones (CN, CF3) slowing it down. The parallel range of rate constants observed in both methanol and cyclohexane indicates that ion pairs are not important intermediates in these rearrangements. Quantum yields of reaction (Phi(r)) for several of the more reactive ethers demonstrate that neither these values nor rate constants of reaction derived from them are reliable measures of the actual excited-state process. In fact, the values are significantly lower than the ones, indicating that the radical pairs undergo recombination to generate starting material. Finally, the rate constants were found to parallel a trend for the change in bond dissociation energy (deltaBDE) for the O-C (allyl) bond of the allyl ethers, indicating that other possible substituent effects are of minor importance.  相似文献   

14.
有机金催化胺氧化羰化制氨基甲酸酯   总被引:8,自引:1,他引:7  
自Haruta等报道高分散担载金催化剂对CO有良好的低温水除活性以来,金催化剂的研究开发开始受到关注,各种提载型金催化剂在选择氧化、氮氧化物消除、选择加氢、甲烷完全氧化以及均相有机金配合物催化剂在醇醛缩合、烯烃羰化、锡烷的偶联等反应中均取得了相当好的效果,但与Pt和Pd等贵金属相比,金作为具有潜在多种催化能力的催化材料了解尚少。现在工业上主要使用胺类化合物与剧毒的光气反应制取异氰酸酯,该反应造成设备腐蚀和环境污染,因此用胺类化合物氧化羰化或硝基化合物的还原羰化合成氨基甲酸酯,然后热裂解制取相应的异氰酸酯得到广泛研究,过去主要以含氮配体配位的钯催化剂为代表的贵金属为催化剂催化羰化合成氨基甲酸酯,以有机金配合物作为含氮化合物羰化催化剂的研究则未见报道,本文首次将有机金配合物作为胺类化合物氧化羰化制取氨基甲酸酯的催化剂,取得了与钯催化剂相当的催化效果,反应如下:R(NH2)n CO O2 R^1OH[Au(PPh3)x]yZ/→/PPh3R(NHCO2R^1)n H2O R=Ar-,RCH2-;R^1=CH3-,CH3CH2-;n=1 or 2,x=1 or 2,y=1 or 2;Z=cl,NO3,S。  相似文献   

15.
In the presence of enantiopure MTBH(2)(monothiobinaphthol, 2-hydroxy-2[prime or minute]mercapto-1,1[prime or minute]-binaphthyl; 0.2 eq.) quantitative allylation of ArC([double bond]O)Me takes place with impure Sn(CH(2)CH[double bond]CH(2))(4)(prepared from allyl chloride, air-oxidised magnesium and SnCl(4)) to yield tert-homoallylic alcohols in 85-92% ee. In the same process highly purified, or commercial, Sn(CH(2)CH[double bond]CH(2))(4) yields material of only 35-50% ee. The origin of these effects is the presence of small amounts of the compounds, EtSn(CH(2)CH[double bond]CH(2))(3), ClSn(CH(2)CH[double bond]CH(2))(3) ClSnEt(CH(2)CH[double bond]CH(2))(2) in the tetraallyltin sample and the presence of traces of water (which inhibits achiral background reactions). All the triallyl and diallyl species enhance the stereoselectivity in the catalytic allylation reaction, the chlorides more so than the ethyl compound. Hydrolysis of ClSnEt(CH(2)CH[double bond]CH(2))(2) affords crystallographically characterised Sn(4)(mu(3)-O)(mu(2)-Cl)(2)Cl(2)Et(4)(CH(2)CH[double bond]CH(2))(4). Reaction of this latter compound with MTBH(2) leads to the most potent catalyst.  相似文献   

16.
Alkyl and aryl sulfides react with equimolecular amounts of p-toluenesulfonylacetylene in CH3CN at 0 degrees C or rt without the use of any catalytic reagent to give good yields of Z-2-sulfanylvinylsulfonyl derivatives with total diastereoselectivity. On the other hand, in the presence of 1.1 equiv of NaH in THF, the same reaction affords the corresponding E-diastereomer also with total diastereoselectivity.  相似文献   

17.
The oxidations of benzyl alcohol, PPh3, and the sulfides (SEt2 and SPh2) (Ph = phenyl and Et = ethyl) by the Os(VI)-hydrazido complex trans-[Os(VI)(tpy)(Cl)2(NN(CH2)4O)](2+) (tpy = 2,2':6',2' '-terpyridine and O(CH2)4N(-) = morpholide) have been investigated in CH3CN solution by UV-visible monitoring and product analysis by gas chromatography-mass spectrometry. For benzyl alcohol and the sulfides, the rate law for the formation of the Os(V)-hydrazido complex, trans-[Os(V)(tpy)(Cl)2(NN(CH2)4O)](+), is first order in both trans-[Os(VI)(tpy)(Cl)2(NN(CH2)4O)](2+) and reductant, with k(benzyl) (25.0 +/- 0.1 degrees C, CH3CN) = (1.80 +/- 0.07) x 10(-4) M(-1) s(-1), k(SEt2) = (1.33 +/- 0.02) x 10(-1) M(-1) s(-1), and k(SPh2) = (1.12 +/- 0.05) x 10(-1) M(-1) s(-1). Reduction of trans-[Os(VI)(tpy)(Cl)2(NN(CH2)4O)](2+) by PPh3 is rapid and accompanied by isomerization and solvolysis to give the Os(IV)-hydrazido product, cis-[Os(IV)(tpy)(NCCH3)2(NN(CH2)4O)](2+), and OPPh3. This reaction presumably occurs by net double Cl-atom transfer to PPh3 to give Cl2PPh3 that subsequently undergoes hydrolysis by trace H2O to give the final product, OPPh3. In the X-ray crystal structure of the Os(IV)-hydrazido complex, the Os-N-N angle of 130.9(5) degrees and the Os-N bond length of 1.971(7) A are consistent with an Os-N double bond.  相似文献   

18.
Functionalized o-carboranes are interesting ligands for transition metals. Reaction of LiC2B10H11 with Me2NCH2CH2Cl in toluene afforded 1-Me2NCH2CH2-1,2-C2B10H11 (1). Treatment of 1 with 1 equiv. of n-BuLi gave [(Me2NCH2CH2)C2B10H10]Li ([1]Li), which was a very useful synthon for the production of bisfunctional o-carboranes. Reaction of [1]Li with RCH2CH2Cl afforded 1-Me2NCH2CH2-2-RCH2CH2-1,2-C2B10H10 (R = Me2N (2), MeO (3)). 1 and 2 were also prepared from the reaction of Li2C2B10H10 with excess Me2NCH2CH2Cl. Treatment of [1]Li with excess MeI or allyl bromide gave the ionic salts, [1-Me3NCH2CH2-2-Me-1,2-C2B10H10][I] (4) and [1-Me2N(CH2=CHCH2)CH2CH2-2-(CH2=CHCH2)-1,2-C2B10H10][Br] (6), respectively. Interaction of [1]Li with 1 equiv. of allyl bromide afforded 1-Me2NCH2CH2-2-(CH2=CHCH2)-1,2-C2B10H10 (5). Treatment of [1]Li with excess dimethylfulvene afforded 1-Me2NCH2CH2-2-C5H5CMe2-1,2-C2B10H10 (7). Interaction of [1]Li with excess ethylene oxide afforded an unexpected product 1-HOCH2CH2-2-(CH2=CH)-1,2-C2B10H10 (8). 1 and 3 were conveniently converted into the corresponding deborated compounds, 7-Me2NHCH2CH2-7,8-C2B9H11 (9) and 7-Me2NHCH2CH2-8-MeOCH2CH2-7,8-C2B9H10 (10), respectively, in MeOH-MeOK solution. All of these compounds were characterized by various spectroscopic techniques and elemental analyses. The solid-state structures of 4 and 6-10 were confirmed by single-crystal X-ray analyses.  相似文献   

19.
The silyl ethers 3-But-2-(OSiMe3)C6H3CH=NR (2a-e) have been prepared by deprotonation of the known iminophenols (1a-e) and treatment with SiClMe3 (a, R = C6H5; b, R = 2,6-Pri2C6H3; c, R = 2,4,6-Me3C6H2; d, R = 2-C6H5C6H4; e, R = C6F5). 2a-c react with TiCl4 in hydrocarbon solvents to give the binuclear complexes [Ti{3-But-2-(O)C6H3CH=N(R)}Cl(mu-Cl3)TiCl3] (3a-c). The pentafluorophenyl species 2e reacts with TiCl4 to give the known complex Ti{3-But-2-(O)C6H3CH=N(R)}2Cl2. The mononuclear five-coordinate complex, Ti{3-But-2-(O)C6H3CH=N(2,4,6-Me3C6H2)}Cl3 (4c), was isolated after repeated recrystallisation of 3c. Performing the dehalosilylation reaction in the presence of tetrahydrofuran yields the octahedral, mononuclear complexes Ti{3-But-2-(O)C6H3CH=N(R)}Cl3(THF) (5a-e). The reaction with ZrCl4(THF)2 proceeds similarly to give complexes Zr{3-But-2-(O)C6H3CH=N(R)}Cl3(THF) (6b-e). The crystal structures of 3b, 4c, 5a, 5c, 5e, 6b, 6d, 6e and the salicylaldehyde titanium complex Ti{3-But-2-(O)C6H3CH=O}Cl3(THF) (7) have been determined. Activation of complexes 5a-e and 6b-e with MAO in an ethene saturated toluene solution gives polyethylene with at best high activity depending on the imine substituent.  相似文献   

20.
Reactions of functionally substituted olefins (allylamines, sulfides and ethers, homoallylic alcohols and amines, as well as vinyl ethers) with Et3Al in the presence of Cp2ZrCl2 as a catalyst were studied. Cycloalumination of allylamines occurs with high regioselectivity to furnish after subsequent deuterolysis 4-deutero-2-(deuteromethyl)butyl-substituted amines. Cycloalumination of alkyl allyl sulfide is accompanied by a side process of the C-S bond cleavage. In the case of allyl and vinyl ethers, no cycloalumination products are formed under the reaction conditions. However, the reactions with homoallylic alcohol and amine after deuterolysis gave the corresponding dideutero-containing compounds in good yields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号