首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
A sensitive spectrophotometric method is reported for the determination of tinidazole (TZ), metronidazole (MZ), benzoyl metronidazole (BMZ) or niclosamide (NS) either in pure form or in formulations. This method is based on reduction with zinc dust and hydrochloric acid followed by reaction with metol and potassium dichromate at pH 3.0 +/- 0.2 to give a coloured product having maximum absorbance at 720 nm (for TZ, MZ and BMZ) or 530 nm (for NS).  相似文献   

2.
Wei-Feng Y  Wan-Ru C  Chung-Gin H  Wei W 《Talanta》1992,39(2):187-190
A highly sensitive and selective procedure for spectrophotometric determination of zinc has been developed. At pH 10.6, in the presence of emulsifier p-octylpolyethyleneglycol phenylether (OP), zinc forms an orange-red complex with o-hydroxybenzenediazoaminoazobenzene (HDAA) which has an absorption maximum at 525 nm. The molar absorptivity is 1.50 x 10(5) 1.mole(-1).cm(-1). Beer's law is obeyed for zinc in the range 0-13 mug/25 ml. The method has been applied to the spectrophotometric determination of trace amounts of zinc in aluminium alloy and in human hair. The proposed method is simple, rapid and accurate. No heating or separation is required.  相似文献   

3.
The adsorption of single polyacrylic acid (PAAc) molecules was investigated on stepped hydroxide-stabilized polar ZnO(0001)-Zn surfaces using atomic force microscope (AFM) topography and force distance spectroscopy. Stepped surfaces of ZnO(0001)-Zn were prepared by a wet chemical etching procedure and PAAc molecules were adsorbed from aqueous NaClO(4) solutions. AFM single molecule topography studies could be utilized to show that polyacrylic acid molecules specifically adsorb on the non-polar (10-10) step edge faces at low ionic strengths. The radius of gyration of the dissolved PAAc in aqueous solution was measured by means of static light scattering experiments yielding a radius of gyration of R(g)=136 nm at pH 7.4 in 50 mM NaClO(4)/NaOH solution, which is in good agreement with the size of the adsorbed PAAc molecules as measured using AFM. The obtained results could be rationalized in terms of binding-site configurations at step edges and the effect of the chemical environment on both local electric double layer charge and molecular conformation of the PAAc molecules. The point of zero charge of the ZnO(10-10) surface was measured with chemical force microscopy to be pH(PZC)=10.2 ± 0.2. The specific adsorption of polyacrylic acid at non-polar ZnO step-edges can be explained by coordinative bonds formed between the carboxylic acid group and the Zn-surface atoms. On the hydroxide stabilized polar surface only weak hydrogen bonds can be formed in addition to van-der-Waals forces. Thus a "diffusion and trapping" mechanism keeps the adsorbed PAAc molecules mobile on the ZnO(0001)-Zn surface terraces due to small interaction forces until they are trapped at the (10-10) step faces by stronger coordinative bonds from the carboxylic groups to zinc atoms located in the first atomic layer of the crystal structure.  相似文献   

4.
Adsorption on ZnO of sodium poly(acrylate) (PAA), sodium poly(styrene sulfonate) (PSS) and a monomer surfactant [hydroxyethylidene diphosphonate (HEDP)] was investigated in suspensions initially equilibrated at pH 7. Results demonstrate interplay in the adsorption mechanism between zinc complexation, salt precipitation, and ZnO dissolution. In the case of PAA, the adsorption isotherm exhibits a maximum attributed to the precipitation of zinc polyacrylate. PSS and HEDP formed high-affinity adsorption isotherms, but the plateau adsorption of HEDP was significantly lower than that of PSS. The adsorption isotherm of each additive is divided into two areas. At low additive concentration (high zinc/additive ratio), the total zinc concentration in the solution decreased and the pH increased upon addition. At a higher additive ratio, zinc concentration and pH increased with the organic concentration. The increase in pH is due to the displacement of hydroxyl ions from the surface and the increase in zinc concentration results from the dissolution of ZnO due to the complexation of zinc ions by the organics. The stability of the ZnO dispersions was investigated by measurement of the particle size distribution after addition of various amounts of polymers. The three additives stabilized the ZnO dispersions efficiently once full surface coverage was reached.  相似文献   

5.
Summary Vanadium (III), obtained by sodium dithionite reduction of vanadium (V), forms a coloured complex with picolinic acid which is extracted into chloroform from slightly acidic medium. The method is free from interference by relatively high concentrations of analytical important elements such as iron, cobalt, nickel, zinc, copper, titanium, aluminium, chromium, molybdenum, tungsten and uranium. The proposed method of separation is simple and rapid and its applicability has been tested by the satisfactory recovery of vanadium from a variety of synthetic and natural samples.  相似文献   

6.
The present research involves the report on electrochemical deportment of Carbendazim (MBC) at multiwalled carbon nanotubes and calcium‐doped zinc oxide nanoparticles altered nanocomposite based carbon paste electrode (MWCNTs/Ca‐ZnO‐CPE). The modified carbon paste evidenced manifest electrocatalytic behavior for MBC in 0.2 M phosphate buffer (PB) solutions. Cyclic voltammetry (CV), linear sweep voltammetry (LSV), and square wave voltammetry (SWV) techniques were used for the analysis. The working electrode assembly exhibits faster electron transfer of MBC with increase in the peak current. At bare CPE, MBC showed maximum peak current of 1.098 μA at potential 0.7568 V whereas at MWCNT/Ca‐ZnO/CPE peak current of 5.203 μA was observed at potential 0.7541 V in 0.2 M PBS of pH 7.0 at the sweep rate of 50 mV s?1. The synthesized 5 % Ca‐ZnO nanoparticles (NPs) were characterized by X‐ray diffraction (XRD), Scanning electron microscopy (SEM), Energy dispersive X‐ray analysis (EDX), and Transmission electron microscopy (TEM) analysis. Various factors influencing the voltammetry of MBC such as pre‐concentration time, pH, sweep rate, and amount of MBC were studied and from the studies we observed that the response was found to be diffusion‐controlled. The concentration variation studies for MBC was watched in the linear working range of 0.01 μM to 0.45 μM and the detection limit was found by SWV technique.  相似文献   

7.
As a photocathode for CO2 reduction, zinc‐blende zinc telluride (ZnTe) was directly formed on a Zn/ZnO nanowire substrate by a simple dissolution–recrystallization mechanism without any surfactant. With the most negative conduction‐band edge among p‐type semiconductors, this new photocatalyst showed efficient and stable CO formation in photoelectrochemical CO2 reduction at ?0.2–?0.7 V versus RHE without a sacrificial reagent.  相似文献   

8.
Zinc is an important alloying element in the 7000 series aluminium alloys. It is also an element that may enrich near the alloy surface during treatments of aluminium alloys by processes such as electropolishing, alkaline anodic etching and alkaline etching. The enrichment may occur since the change in Gibbs free energy per equivalent for formation of ZnO is less negative than that for formation of Al2O3. The enriched alloying element is present in an alloy layer up to ~5 nm thick located immediately beneath the alloy/film interface. In the present study, the dependence of the enrichment of zinc on the grain orientation of the alloy is investigated for a solid solution Al‐1.1at.%Zn alloy. The enrichment of the zinc is developed by alkaline etching of the alloy. The grain orientation is determined by electron backscattering diffraction, with enrichments quantified on selected grains by Rutherford backscattering spectroscopy and medium energy ion scattering. The morphologies of the surfaces of the etched grains are characterised by scanning electron microscopy and atomic force microscopy. The findings reveal that the zinc enrichment ranges from 1.7 × 1015 atoms/cm2 to 3.9 × 1015 atoms/cm2, with the greatest enrichment occurring on a grain of (100) orientation, while differing surface topographical textures are developed on the various grains. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
ZnO/polystyrene composite particles were synthesized by Pickering emulsion polymerization. ZnO nanoparticles were first prepared by reaction of zinc acetate and sodium hydroxide in ethanol medium. Then different amount of styrene monomer was emulsified in water in the presence of ZnO nanoparticles either by mechanical stirring or by sonication, followed by polymerization of styrene. Two kinds of initiators were used to start the polymerization, azobisisobutyronitrile (AIBN) and potassium persulfate (KPS). The X-ray diffraction pattern verified the crystal structure of ZnO and FT-IR spectra evidenced the existence of ZnO and polystyrene (PS) in ZnO/polystyrene composite particles. Different morphologies were observed for the composite particles when using different initiators. From TEM photographs, AIBN-initiated system produced mainly core-shell composite particles with PS as core and ZnO as shell, while KPS-initiated system showed both composite particles and pure PS particles. Two schemes of reaction mechanism were proposed to explain the morphologies accordingly. Both systems of composite particles showed good pH adjusting ability.  相似文献   

10.
研究了微分脉冲伏安法测定复杂硫酸锌溶液体系中的铊。讨论了伏安图的形成、测定底液和pH值的选择。结果表明:在醋酸介质(pH=4.5±0.2)中,加入适量EDTA、聚乙二醇6000和抗坏血酸的测定体系,采用微分脉冲伏安法可直接测定铊。方法检出限为1.0×10-8g/L,千倍浓度的8种阳离子共存或单独存在时均不干扰测定。方法用于湿法炼锌中上清、一段净化后液、二段净化后液、电积新液、电积废液中铊的测定,相对标准偏差RSD分别为1.6%,2.5%,3.3%,8.3%,4.9%,铊加标回收率为98.4%~102.2%。方法灵敏、简单、快速,用来测定湿法炼锌各阶段硫酸锌溶液中的铊,结果满意。  相似文献   

11.
Commercial TiO2 (Hombikat, UV-100) was impregnated with different loadings of zinc nitrate solution and subsequently calcined at different temperatures in order to obtain a stable homogeneous solid composite of ZnO/TiO2. The prepared samples were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), high resolution transmission electron microscopy (HR-TEM), UV-vis and Raman spectroscopy, inductively coupled plasma mass spectroscopy (ICP), X-ray photoelectron spectroscopy (XPS) as well as N2 adsorption and desorption measurements. Results show that ZnO was incorporated within the TiO2 crystals and did not form a separate bulky phase or metallic zinc. Moreover, the calcination temperature dramatically modifies the texture properties of the prepared samples compared with original Hombikat TiO2. The photocatalytic performance of the prepared samples was evaluated by monitoring the degradation of methyl orange dye under black light illumination. Three main parameters were studied; ZnO loading, surface area and initial pH of the methyl orange solution. The variation in ZnO loading appears to have less influence on the catalytic activity than either the surface area or the pH.  相似文献   

12.
Zhou N  Gu YX  Lu ZR  Chen WY 《Talanta》1989,36(7):739-742
A new spectrophotometric method for the determination of zinc is proposed. The chromogenic agent Hydrazidazol forms a 1:1 chelate with zinc in the presence of Triton X-100 in a medium containing 20-40% ethanol. The molar absorptivity and conditional formation constant have been found to be 2.7 x 1O(4) l.mole(-1).cm(-1) (at 640 nm) and 10(5.32) respectively. Beer's law is obeyed for zinc over the range of 0.2-0.8 mug/ml with a standard deviation of 0.024 mug/ml. The method can be applied to the determination of zinc in cadmium metal and its oxide after preconcentration by selective extraction of zinc thiocyanate into ethyl acetate in the presence of EDTA and thiosulphate as masking agents.  相似文献   

13.
The anion-exchange separation of cadmium from zinc and aluminium in organic solvent-nitric acid mixtures was studied. The distribution coefficients of the 3 elements in various 90% organic solvcnt-10% 5 N nitric acid media were determined for Dowex I-X8 resin. A 90% ethanol-10% 5 N nitric acid medium was most satisfactory for the quantitative separation of cadmium from zinc and aluminium. The method was applied to the analysis of some copper and aluminium base alloys. Methyl glycol or acetic acid could be used instead of ethanol. Both cadmium and zinc were strongly adsorbed from a 90% propionc acid-10% 5 N nitric acid medium; separation was then effected by gradient elution.  相似文献   

14.
Nitroarenes were chemoselectively reduced to the corresponding amines using zinc and aqueous ammonium salts in ionic liquids as a safe and recyclable reaction medium. Our results specify the effect of ammonium salts in the process; the combination of Zn/NH4Cl in [bmim][PF6] or Zn/HCO2NH4 in [bmim][BF4] were the suitable conditions for the reduction of nitroarenes. Azobenzenes were also smoothly reduced to hydrazobenzenes with Zn/HCO2NH4 (aq.) in recyclable [bmim][BF4] without any over reduction to the corresponding anilines.  相似文献   

15.
Herein, we report a bottom-up, mineralization strategy, which borrows key principles from biomineralization processes, to synthesize nanostructured materials. A long-chain polyamine simultaneously mineralizes and assembles ZnO nanoparticles directly from water-soluble zinc salts under sustainable synthesis conditions. These thus-generated oriented structures undergo interesting morphogenesis that is controlled by changing the ratio of polyamine/Zn(2+) ions. As the ratio increases, the morphology changes from a spherical shape to oval-, dumbbell-, and finally hexagonal-rod-shaped structures that contain unique hollow rod structures. Using XPS, XRD, FT-IR, Raman spectroscopy, DLS, and confocal fluorescence microscopic analysis, we elucidate the mechanism of structural evolution; this mechanism involves the initial formation of a zinc/amine complex that is furnished with polyamine chains. These chains facilitate the condensation process to form ZnO nanoparticles and their assembly in aqueous medium at neutral pH. Further, the presence of defects in the thus-morphogenized ZnO structures leads to blue luminescence and efficient photoinduced activity, assisted by the surface-hole-trapping effect of polyamines.  相似文献   

16.
Photocatalytic oxidation of glycerol at ambient conditions has been investigated with the use of Zinc oxide photocatalysts. Zinc oxide nanorods were prepared via a simple hydrothermal method using zinc nitrate and sodium hydroxide in the solution pH of 7, 8 and 9. The samples prepared in this way were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscope (TEM), Brunauer-Emmett-Teller (BET) and ultraviolet–visible spectroscopy (UV–vis). The pH of the solution is 7, the sample contains zinc hydroxide nitrate hydrated. When the pH of solution was adjusted to 8 and 9, the samples consisted of pure hexagonal wurtzite ZnO without impurity detection. The influence of solution pH on hydrogen formation was investigated. The wurtzite ZnO nanorods synthesized in a solution with pH 9 are considered promising photocatalysts for hydrogen production under xenon radiation.  相似文献   

17.
Development of highly active and recyclable catalysts for selective hydrogenation of nitroarenes to amines in water at room temperature is always a challenge in chemical industry. This study reports a facile in situ method for synthesis of ultrafine palladium and platinum nanoparticles (NPs) stabilized by poly (amic acid) salt (PAAS) and their potential as catalysts for hydrogenation of nitroarenes with sodium borohydride or molecular hydrogen as reductant in water at room temperature. In the reduction of 4‐nitrophenol to 4‐aminophenol by sodium borohydride, the activity parameters of PdNPs–PAAS and PtNPs–PAAS catalyst is 6.66 × 103 and 5.58 × 103 s?1 M?1 respectively. In the hydrogenation of diverse nitroarenes under atmospheric hydrogen pressure, PdNPs–PAAS shows high activity but poor selectivity toward desired amines in some cases, while PtNPs–PAAS shows both high activity and high selectivity for selective hydrogenation of nitroarenes to corresponding anilines. The high efficiency of nanocatalyst is due to the quasi‐homogeneous dispersion of metal NPs and synergistic effects between metal NPs and PAAS. In addition, nanocatalyst can be easily recovered with pH‐sensibility of PAAS and reused at least six times without significant loss of catalytic activities.  相似文献   

18.
We report a method for synthesizing zinc citrate spheres at a low temperature (90 °C) under normal atmospheric pressure. The spherical structures were amorphous and had an average diameter of ~1.7 μm. The amorphous zinc citrate spheres could be converted into crystalline ZnO nanostructures in aqueous solutions by heating at 90 °C for 1 h. By local dissolution of the zinc citrate spheres, nucleation and growth of ZnO occurred on the surfaces of the amorphous zinc citrate spheres. The morphologies and exposed crystal faces of the crystalline ZnO nanostructures (structure I: oblate spheroid; structure II: prolate spheroid; structure III: hexagonal disk; structure IV: sphere) could be controlled simply by varying the solution composition (solutions I, II, III, or IV) in which the as-prepared amorphous zinc citrate spheres were converted. The concentration of citrate anions and solution pH played a decisive role in determining the morphologies and exposed crystal faces of the crystalline ZnO nanostructures. On the basis of experimental results, we propose a plausible mechanism for the conversion of amorphous zinc citrate spheres into the variety of observed ZnO structures.  相似文献   

19.
Zn2+ release from Zn and ZnO particles with different sizes in simulated uterine solution were investigated by absorbance measurements. The effects of pH and human serum albumin (HSA) on Zn2+ release were also studied. The morphology of Zn and ZnO particles was observed by scanning electron microscopy, and the corrosion products of zinc nanoparticles were analyzed by XRD. The results indicate that the maximum release ratios of Zn2+ from Zn and ZnO nanoparticles are higher than those from Zn and ZnO microparticles. Zn2+ release ratio depends not only on the pH of the simulated uterine solution but also the presence of human serum albumin. It decreases as the pH of the uterine solution increases. The trends of Zn2+ release ratios are almost the opposite for solutions with and without HSA. XRD analysis results indicate that zinc oxide is the main corrosion product of zinc particles.  相似文献   

20.
Hybrid nanofibers of ZnO precursors/PET were fabricated by electrospinning a nonaqueous poly(ethylene terephthalate) (PET) solution containing zinc acetate dihydrate. Scanning electron microscopy images showed that the as prepared nanofibers had smooth and uniform surfaces, and the diameter was decreased with increasing zinc acetate dihydrate content and reducing PET concentration. After the treatment by a mild process of immersing the fibers in ammonia‐ethanol mixtures (pH ≈ 9–11), the surface of the nanofibers became rough during the formation of ZnO nanocrystals in the fibers. High resolution transmission electron microscopy images showed that the mean particle size became smaller with increasing diameter of the polymer fibers and decreasing content of ZnO. Fourier transform infrared spectra confirmed the ZnO formation in the hybrid nanofibers. X‐ray diffractometry patterns indicated that ZnO had the Wurtzite structure. The formation and growth of ZnO nanocrystals in the nanofiber matrices was also influenced by the various other parameters, that is, the pH value of the reaction solution, the content of zinc acetate dihydrate within the fibers, the reaction time and temperature. Photoluminescence spectra under excitation at 300 nm revealed a broad and intense ultraviolet emission. The UV‐visible diffuse reflectance spectra demonstrated the blue shift in the absorbance curve, which was ascribed to the quantum confinement effects of ZnO nanoparticles in the hybrid materials. These hybrid nanofibers can potentially be used in light emitters, chemical sensors, photo‐catalysts and solar cells. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 49: 1360–1368, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号