首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We explore how the globality of quantum logic operations is ensured in the context of optimal control theory when qubits are encoded in vibrational eigenstates of different normal modes and specially shaped laser fields act as quantum logic operations. In a two-qubit model system, transition mechanisms for optimized laser fields generating single qubit flips, local NOT and global NOT and controlled-NOT (CNOT) gates are investigated and compared. We evaluate the participation of vibrational eigenstates beyond the qubit basis in the global gate mechanisms and how different features of CNOT and NOT gates relate to the characteristics of the vibrational manifold. When a non-qubit normal mode interacting via anharmonic resonances is introduced, neither the global gate mechanisms nor the optimized laser fields show a significant increase in complexity. Similar features of the global quantum gates in both model systems indicate a generality of the deduced principles. Finally, a primary concept for a realization of global quantum gates in an actual experiment referring to state-of-the-art techniques is presented. The possible reconstruction of optimized laser fields with sequences of simple Gaussian subpulses is demonstrated and some critical parameters are deduced.  相似文献   

2.
A model is developed to study the properties of a quantum computer that uses vibrational eigenstates of molecules to implement the quantum information bits and shaped laser pulses to apply the quantum logic gates. Particular emphasis of this study is on understanding how the different factors, such as properties of the molecule and of the pulse, can be used to affect the accuracy of quantum gates in such a system. Optimal control theory and numerical time-propagation of vibrational wave packets are employed to obtain the shaped pulses for the gates NOT and Hadamard transform. The effects of the anharmonicity parameter of the molecule, the target time of the pulse and of the penalty function are investigated. Influence of all these parameters on the accuracy of qubit transformations is observed and explained. It is shown that when all these parameters are carefully chosen the accuracy of quantum gates reaches 99.9%.  相似文献   

3.
The phase of quantum gates is one key issue for the implementation of quantum algorithms. In this paper we first investigate the phase evolution of global molecular quantum gates, which are realized by optimally shaped femtosecond laser pulses. The specific laser fields are calculated using the multitarget optimal control algorithm, our modification of the optimal control theory relevant for application in quantum computing. As qubit system we use vibrational modes of polyatomic molecules, here the two IR-active modes of acetylene. Exemplarily, we present our results for a Pi gate, which shows a strong dependence on the phase, leading to a significant decrease in quantum yield. To correct for this unwanted behavior we include pressure on the quantum phase in our multitarget approach. In addition the accuracy of these phase corrected global quantum gates is enhanced. Furthermore we could show that in our molecular approach phase corrected quantum gates and basis set independence are directly linked. Basis set independence is also another property highly required for the performance of quantum algorithms. By realizing the Deutsch-Jozsa algorithm in our two qubit molecular model system, we demonstrate the good performance of our phase corrected and basis set independent quantum gates.  相似文献   

4.
Our concept for a quantum computational system is based on qubits encoded in vibrational normal modes of polyatomic molecules. The quantum gates are implemented by shaped femtosecond laser pulses. We adopt this concept to the new species manganese pentacarbonyl bromide [MnBr(CO)5] and show that it is a promising candidate in the mid-infrared (IR) frequency range to connect theory and experiment. As direct reference for the ab initio calculations we evaluated experimentally the absorption bands of MnBr(CO)5 in the mid-IR as well as the related transition dipole moments. The two-dimensional potential-energy surface spanned by the two strongest IR active modes and the dipole vector surfaces are calculated with density-functional theory. The vibrational eigenstates representing the qubit system are determined. Laser pulses are optimized by multitarget optimal control theory to form a set of global quantum gates: NOT, CNOT, Pi, and Hadamard. For all of them simply structured pulses with low pulse energies around 1 microJ could be obtained. Exemplarily for the CNOT gate we investigated the possible transfer to experimental shaping, based on the mask function for pulse shaping in the frequency regime as well as decomposition into a train of subpulses.  相似文献   

5.
In order to use molecular vibrations for quantum information processing one should be able to shape infrared laser pulses so that they can play the role of accurate quantum gates and drive the required vibrational transitions. In this paper we studied theoretically how the relative phase of the optimized transitions affects accuracy of the quantum gates in such a system. Optimal control theory and numerical propagation of laser-driven vibrational wave packets were employed. The dependencies observed for one-qubit gates NOT, pi-rotation, and Hadamard transform are qualitatively similar to each other. The results of the numerical tests agree well with the analytical predictions.  相似文献   

6.
The importance of the ro-vibrational state energies on the ability to produce high fidelity binary shaped laser pulses for quantum logic gates is investigated. The single frequency 2-qubit ACNOT(1) and double frequency 2-qubit NOT(2) quantum gates are used as test cases to examine this behaviour. A range of diatomics is sampled. The laser pulses are optimized using a genetic algorithm for binary (two amplitude and two phase parameter) variation on a discretized frequency spectrum. The resulting trends in the fidelities were attributed to the intrinsic molecular properties and not the choice of method: a discretized frequency spectrum with genetic algorithm optimization. This is verified by using other common laser pulse optimization methods (including iterative optimal control theory), which result in the same qualitative trends in fidelity. The results differ from other studies that used vibrational state energies only. Moreover, appropriate choice of diatomic (relative ro-vibrational state arrangement) is critical for producing high fidelity optimized quantum logic gates. It is also suggested that global phase alignment imposes a significant restriction on obtaining high fidelity regions within the parameter search space. Overall, this indicates a complexity in the ability to provide appropriate binary laser pulse control of diatomics for molecular quantum computing.  相似文献   

7.
In a recent paper [D. Babikov, J. Chem. Phys. 121, 7577 (2004)], quantum optimal control theory was applied to analyze the accuracy of quantum gates in a quantum computer based on molecular vibrational eigenstates. The effects of the anharmonicity parameter of the molecule, the target time of the pulse, and the penalty function on the accuracy of the qubit transformations were investigated. We demonstrate that the effects of all the molecular and laser-pulse parameters can be explained utilizing the analytical pulse area theorem, which originates from the standard two-level model. Moreover, by analyzing the difference between the optimal control theory results and those obtained using the pulse area theorem, it is shown that extremely high quantum gate fidelity can be achieved for a qubit system based on vibrational eigenstates.  相似文献   

8.
Optimal control theory is applied to a molecular vibrational system in light of its possible application to quantum computing (QC). We present the numerical results of an ammonia molecular vibrational model system with two modes: a bending mode and an asymmetric stretching mode. We demonstrate logic gates fundamental to QC algorithms, namely Hadamard and controlled-NOT gates. Our results show that averages of population transfers at each gate are above 93% high fidelity. A mode that has a double-well structured potential is found to have many transfer pathways, which facilitates obtaining optimal laser pulses.  相似文献   

9.
Recent publications have demonstrated how to implement a NOR logic gate with a single molecule using its interaction with two surface atoms as logical inputs [W. Soe et al., ACS Nano, 2011, 5, 1436]. We demonstrate here how this NOR logic gate belongs to the general family of quantum logic gates where the Boolean truth table results from a full control of the quantum trajectory of the electron transfer process through the molecule by very local and classical inputs practiced on the molecule. A new molecule OR gate is proposed for the logical inputs to be also single metal atoms, one per logical input.  相似文献   

10.
Modern computer processors are based on semiconductor logic gates connected to each other in complex circuits. This study contributes to the development of a new class of connectable logic gates made of DNA in which the transfer of oligonucleotide fragments as input/output signals occurs upon hybridization of DNA sequences. The DNA strands responsible for a logic function form associates containing immobile DNA four‐way junction structures when the signal is high and dissociate into separate strands when the signal is low. A basic set of logic gates (NOT, AND, and OR) was designed. Two NOT gates, two AND gates, and an OR gate were connected in a network that corresponds to an XOR logic function. The design of the logic gates presented here may contribute to the development of the first biocompatible molecular computer.  相似文献   

11.
In proposals for quantum computers using arrays of trapped ultracold polar molecules as qubits, a strong external field with appreciable gradient is imposed in order to prevent quenching of the dipole moments by rotation and to distinguish among the qubit sites. That field induces the molecular dipoles to undergo pendular oscillations, which markedly affect the qubit states and the dipole-dipole interaction. We evaluate entanglement of the pendular qubit states for two linear dipoles, characterized by pairwise concurrence, as a function of the molecular dipole moment and rotational constant, strengths of the external field and the dipole-dipole coupling, and ambient temperature. We also evaluate a key frequency shift, △ω, produced by the dipole-dipole interaction. Under conditions envisioned for the proposed quantum computers, both the concurrence and △ω become very small for the ground eigenstate. In principle, such weak entanglement can be sufficient for operation of logic gates, provided the resolution is high enough to detect the △ω shift unambiguously. In practice, however, for many candidate polar molecules it appears a challenging task to attain adequate resolution. Simple approximate formulas fitted to our numerical results are provided from which the concurrence and △ω shift can be obtained in terms of unitless reduced variables.  相似文献   

12.
The implementations of quantum logic gates realized by the rovibrational states of a C(12)O(16) molecule in the X((1)Σ(+)) electronic ground state are investigated. Optimal laser fields are obtained by using the modified multitarget optimal theory (MTOCT) which combines the maxima of the cost functional and the fidelity for state and quantum process. The projection operator technique together with modified MTOCT is used to get optimal laser fields. If initial states of the quantum gate are pure states, states at target time approach well to ideal target states. However, if the initial states are mixed states, the target states do not approach well to ideal ones. The process fidelity is introduced to investigate the reliability of the quantum gate operation driven by the optimal laser field. We found that the quantum gates operate reliably whether the initial states are pure or mixed.  相似文献   

13.
We developed an efficient approach to study the coherent control of vibrational state-to-state transitions. The approximations employed in our model are valid in the regime of the low vibrational excitation specific to the vibrational quantum computer. Using this approach we explored how the vibrational properties of a two-qubit system affect the accuracy of subpicosecond quantum gates. The optimal control theory and numerical propagation of laser-driven vibrational wave packets were employed. The focus was on understanding the effect of the three anharmonicity parameters of the system. In the three-dimensional anharmonicity parameter space we identified several spots of high fidelity separated by low fidelity planar regions. The seemingly complicated picture is explained in terms of interferences between different state-to-state transitions. Very general analytic relationships between the anharmonicity parameters and the frequencies are derived to describe the observed features. Geometrically, these expressions represent planes in the three-dimensional anharmonicity parameter space. Results of this work should help to choose a suitable candidate molecule for the practical implementation of the vibrational two-qubit system.  相似文献   

14.
The use of nuclear magnetic resonance (NMR) to carry out quantum information processing (QIP) often requires the preparation, transformation, and detection of pseudopure states. In our previous work, it was shown that the use of pairs of pseudopure states (POPS) as a basis for QIP is very convenient because of the simplicity in experimental execution. It is now further demonstrated that the product of the NMR spectra corresponding to two sets of POPS that share a common pseudopure state has the same peak frequencies as those of the common (single) pseudopure state. Examples of applying two different quantum logic gates to a 5-qubit system are given.  相似文献   

15.
A silicon field‐effect transistor is operated as a logic circuit by electrically addressing the ground and excited electronic states of an embedded single dopant atom. Experimental results—complemented by analytical and computational calculations—are presented. First, we show how a complete set of binary logic gates can be realized on the same hardware. Then, we show that these gates can be operated in parallel on the very same dopant up to the logic level of a full adder. To use the device not as a switch but as a full logic circuit, we make essential use of the excited electronic states of the dopant and of the ability to shift their energy by gating. The experimental ability to use two channels to measure the current flowing through the device and the conductance (dI/dV) allows for a robust reading of the output of the logic operations.  相似文献   

16.
The quantum Deutsch-Jozsa algorithm is implemented by using vibrational modes of a two-dimensional double well. The laser fields realizing the different gates (NOT, CNOT, and HADAMARD) on the two-qubit space are computed by the multitarget optimal control theory. The stability of the performance index is checked by coupling the system to an environment. Firstly, the two-dimensional subspace is coupled to a small number Nb of oscillators in order to simulate intramolecular vibrational energy redistribution. The complete (2+Nb)D problem is solved by the coupled harmonic adiabatic channel method which allows including coupled modes up to Nb=5. Secondly, the computational subspace is coupled to a continuous bath of oscillators in order to simulate a confined environment expected to be favorable to achieve molecular computing, for instance, molecules confined in matrices or in a fullerene. The spectral density of the bath is approximated by an Ohmic law with a cutoff for some hundreds of cm(-1). The time scale of the bath dynamics (of the order of 10 fs) is then smaller than the relaxation time and the controlled dynamics (2 ps) so that Markovian dissipative dynamics is used.  相似文献   

17.
Temperature-driven fluorescent NOT logic is demonstrated by exploiting predissociation in a 1,3,5-trisubstituted Δ2-pyrazoline on its own and when grafted onto silica microparticles. Related Δ2-pyrazolines become proton-driven YES and NOT logic gates on the basis of fluorescent photoinduced electron transfer (PET) switches. Additional PASS 1 and YES+PASS 1 logic gates on silica are also demonstrated within the same family. Beside these small-molecule systems, a polymeric molecular thermometer based on a benzofurazan-derivatized N-isopropylacrylamide copolymer is attached to silica to produce temperature-driven fluorescent YES logic.  相似文献   

18.
Decoherence-free subsystems (DFSs) are a powerful means of protecting quantum information against noise with known symmetry properties. Although Hamiltonians that can implement a universal set of logic gates on DFS encoded qubits without ever leaving the protected subsystem theoretically exist, the natural Hamiltonians that are available in specific implementations do not necessarily have this property. Here we describe some of the principles that can be used in such cases to operate on encoded qubits without losing the protection offered by the DFSs. In particular, we show how dynamical decoupling can be used to control decoherence during the unavoidable excursions outside of the DFS. By means of cumulant expansions, we show how the fidelity of quantum gates implemented by this method on a simple two physical qubit DFS depends on the correlation time of the noise responsible for decoherence. We further show by means of numerical simulations how our previously introduced "strongly modulating pulses" for NMR quantum information processing can permit high-fidelity operations on multiple DFS encoded qubits in practice, provided that the rate at which the system can be modulated is fast compared to the correlation time of the noise. The principles thereby illustrated are expected to be broadly applicable to many implementations of quantum information processors based on DFS encoded qubits.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号