首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Spectrally resolved infrared stimulated vibrational echo data were obtained for sperm whale carbonmonoxymyoglobin (MbCO) at 300 K. The measured dephasing dynamics of the CO ligand are in agreement with dephasing dynamics calculated with molecular dynamics (MD) simulations for MbCO with the residue histidine-64 (His64) having its imidazole epsilon nitrogen protonated (N(epsilon)-H). The two conformational substate structures B(epsilon) and R(epsilon) observed in the MD simulations are assigned to the spectroscopic A(1) and A(3) conformational substates of MbCO, respectively, based on the agreement between the experimentally measured and calculated dephasing dynamics for these substates. In the A(1) substate, the N(epsilon)-H proton and N(delta) of His64 are approximately equidistant from the CO ligand, while in the A(3) substate, the N(epsilon)-H of His64 is oriented toward the CO, and the N(delta) is on the surface of the protein. The MD simulations show that dynamics of His64 represent the major source of vibrational dephasing of the CO ligand in the A(3) state on both femtosecond and picosecond time scales. Dephasing in the A(1) state is controlled by His64 on femtosecond time scales, and by the rest of the protein and the water solvent on longer time scales.  相似文献   

2.
An umbrella sampling approach for vibrational frequency line shifts is presented. The technique allows for efficient sampling of the solvent configurations corresponding to frequency shifts of a solute in mixed quantum-classical simulations. The approach is generally applicable and can also be used within traditional perturbation theory calculations of frequency shifts. It is particularly useful in the extraction of detailed mechanistic information about the solute-solvent interactions giving rise to the frequency shifts. The method is illustrated by application to the simple I2 in a liquid Xe system, and the advantages are discussed.  相似文献   

3.
The reactive scattering of a wave packet is studied by the quantum trajectory method for a model system with up to 25 Morse vibrational modes. The equations of motion are formulated in curvilinear reaction path coordinates with the restriction to a planar reaction path. Spatial derivatives are evaluated by the least squares method using contracted basis sets. Dynamical results, including trajectory evolution and time-dependent reaction probabilities, are presented and analyzed. For the case of one Morse vibrational mode, the results are in good agreement with those derived through direct numerical integration of the time-dependent Schrodinger equation.  相似文献   

4.
Starting from a system-bath Hamiltonian in a molecular coordinate representation, we examine an applicability of a stochastic multilevel model for vibrational dephasing and energy relaxation in multidimensional infrared spectroscopy. We consider an intramolecular anharmonic mode nonlinearly coupled to a colored noise bath at finite temperature. The system-bath interaction is assumed linear plus square in the system coordinate, but linear in the bath coordinates. The square-linear system-bath interaction leads to dephasing due to the frequency fluctuation of system vibration, while the linear-linear interaction contributes to energy relaxation and a part of dephasing arises from anharmonicity. To clarify the role and origin of vibrational dephasing and energy relaxation in the stochastic model, the system part is then transformed into an energy eigenstate representation without using the rotating wave approximation. Two-dimensional (2D) infrared spectra are then calculated by solving a low-temperature corrected quantum Fokker-Planck (LTC-QFP) equation for a colored noise bath and by the stochastic theory. In motional narrowing regime, the spectra from the stochastic model are quite different from those from the LTC-QFP. In spectral diffusion regime, however, the 2D line shapes from the stochastic model resemble those from the LTC-QFP besides the blueshifts caused by the dissipation from the colored noise bath. The preconditions for validity of the stochastic theory for molecular vibrational motion are also discussed.  相似文献   

5.
The dynamics of ensembles containing thousands of quantum trajectories are studied for multidimensional systems undergoing reactive scattering. The Hamiltonian and equations of motion are formulated in curvilinear reaction path coordinates, for the case of a planar (zero-torsion) reaction path. In order to enhance the computational efficiency, an improved least squares fitting procedure is introduced. This scheme involves contracted basis sets and the use of inner and outer stencils around points where fitting is performed. This method is applied to reactive systems with 50-200 harmonic vibrational modes which are coupled to motion along the reaction coordinate. Dynamical results, including trajectory evolution and time-dependent reaction probabilities, are presented and power law scaling of computation time with the number of vibrational modes is described.  相似文献   

6.
We present an analytical expression for the linear and nonlinear infrared spectra of interacting molecular vibrational motions. Each of the molecular modes is explicitly represented by a classical damped oscillator on an anharmonic multidimensional potential-energy surface. The two essential interactions, the dipole-dipole (DD) and the dipole-induced-dipole (DID) interactions, are taken into account, and each dipole moment and polarizability are expanded to nonlinear order with respect to the nuclear vibrational coordinate. Our analytical treatment leads to expressions for the contributions of anharmonicity, DD and DID interactions, and the nonlinearity of dipole moments and polarizability elements to the one-, two-, and three-dimensional spectra as separated terms, which allows us to discuss the relative importance of these respective contributions. We can calculate multidimensional signals for various configurations of molecules interacting through DD and DID interactions for different material parameters over the whole range of frequencies. We demonstrate that contributions from the DD and DID interactions and anharmonicity are separately detectable through the third-order three-dimensional IR spectroscopy, whereas they cannot be distinguished from each other in either the linear or the second-order IR spectroscopies. The possibility of obtaining the intra- or intermolecular structural information from multidimensional spectra is also discussed.  相似文献   

7.
We report the sum frequency generation (SFG) spectra of aqueous sodium iodide interfaces computed with the methodology outlined by Morita and Hynes (J. Phys. Chem. B 2002, 106, 673), which is based on molecular dynamics simulations. The calculated spectra are in qualitative agreement with experiment. Our simulations show that the addition of sodium iodide to water leads to an increase in SFG intensity in the region of 3400 cm(-1), which is correlated with an increase in ordering of hydrogen-bonded water molecules. Depth-resolved orientational distribution functions suggest that the ion double layer orders water molecules that are approximately one water layer below the Gibbs dividing surface. We attribute the increase in SFG intensity to these ordered subsurface water molecules that are present in the aqueous sodium iodide/air interfaces but are absent in the neat water/air interface.  相似文献   

8.
Ultrafast infrared heterodyne detected vibrational stimulated echoes with full phase information are used to obtain the vibrational correlation spectrum from a mixture of metal-carbonyl compounds. The linear absorption spectrum displays four peaks in the carbonyl stretching region. In the absence of knowledge of the molecules that make up the mixture, the absorption spectrum could arise from four molecules that each produces a single peak to one molecule with four peaks. In contrast, the correlation spectrum displays four peaks on the diagonal and off-diagonal peaks that make it straightforward to determine which peaks belong to a particular molecule.  相似文献   

9.
Transition path sampling is an innovative method for focusing a molecular dynamics simulation on a reactive event. Although transition path sampling methods can generate an ensemble of reactive trajectories, an initial reactive trajectory must be generated by some other means. In this paper, the authors have evaluated three methods for generating initial reactive trajectories for transition path sampling with ab initio molecular dynamics. The authors have tested each of these methods on a set of chemical reactions involving the breaking and making of covalent bonds: the 1,2-hydrogen elimination in the borane-ammonia adduct, a tautomerization, and the Claisen rearrangement. The first method is to initiate trajectories from the potential energy transition state, which was effective for all reactions in the test set. Assigning atomic velocities found using normal mode analysis greatly improved the success of this method. The second method uses a high temperature molecular dynamics simulation and then iteratively reduces the total energy of the simulation until a low temperature reactive trajectory is found. This was effective in generating a low temperature trajectory from an initial trajectory run at 3000 K of the tautomerization reaction, although it failed for the other two. The third uses an orbital based bias potential to find a reactive trajectory and uses this trajectory to initiate an unbiased trajectory. The authors found that a highest occupied molecular orbital-lowest unoccupied molecular orbital bias could be used to find a reactive trajectory for the Claisen rearrangement, although it failed for the other two reactions. These techniques will help make it practical to use transition path sampling to study chemical reaction mechanisms that involve bond breaking and forming.  相似文献   

10.
Classical molecular dynamics is a convenient method for computing anharmonic infrared spectra of polyatomic molecules and condensed phase systems. However it does not perform well for predicting accurate intensities and it lacks nuclear quantization, two deficiencies that are usually accounted for by empirical scaling factors. In this paper we show on the examples of the trans isomer of nitrous acid and naphthalene that both issues can be alleviated by preparing the initial conditions according to semiclassical quantization based on a normal mode representation. The method correctly reproduces fundamental frequencies obtained with quantum mechanical methods. At increasing temperatures, the effective frequencies are found to follow the same trends as path-integral based methods. In the low-temperature limit, the band intensities predicted by the method are also found to agree with quantum mechanical considerations.  相似文献   

11.
The infrared and Raman spectra of naphthalene crystal with inclusion of anharmonic effects have been calculated by adopting the generalized variational density functional perturbation theory in the framework of Car-Parrinello molecular dynamics simulations. The computational approach has been generalized for cells of arbitrary shape. The intermolecular interactions have been analyzed with and without the van der Waals corrections, showing the importance of such interactions in the naphthalene crystal to reproduce the structural, dynamical, and spectroscopic properties.  相似文献   

12.
13.
A new method for performing molecular dynamics simulations with fluctuating charge polarizable potentials is introduced. In fluctuating charge models, polarizability is treated by allowing the partial charges to be variables, with values that are coupled to charges on the same molecule as well as those on other molecules. The charges can be efficiently propagated in a molecular dynamics simulation using extended Lagrangian dynamics. By making a coordinate change from the charge variables to a set of normal mode charge coordinates for each molecule, a new method is constructed in which the normal mode charge variables uncouple from those on the same molecule. The method is applied to the TIP4P-FQ model of water and compared to other methods for implementing the dynamics. The methods are compared using different molecular dynamics time steps.  相似文献   

14.
Ultrashort pulse lasers with 6- and 20-fs durations were utilized for phthalocyanine thin film sample to induce several vibrational modes and vibration amplitude spectra were determined by multi-wavelength measurement technique. From the spectra we could identify the electronic states, which couple to two vibrational modes with frequencies of 670 and 750 cm−1. It was shown that the vibrational amplitude profile obtained by the method can be used for providing information for the assignment of the vibrational mode.  相似文献   

15.
Time-resolved vibrational spectroscopy is used to investigate the inter-component motion of an ultraviolet-triggered two-station molecular shuttle. The operation cycle of this molecular shuttle involves several intermediate species, which are observable in the amide I and amide II regions of the mid-IR spectrum. Using ab initio calculations on specific parts of the rotaxane, and by comparing the transient spectra of the normal rotaxane with that of the N-deuterated version, we can assign the observed vibrational modes of each species occurring during the shuttling cycle in an unambiguous way. The complete time- and frequency-dependent data set is analyzed using singular value decomposition (SVD). Using a kinetic model to describe the time-dependent concentrations of the transient species, we derive the absorption spectra associated with each stage in the operation cycle of the molecular shuttle, including the recombination of the charged species.  相似文献   

16.
Molecular dynamics simulations of the structural distributions and the associated amide-I vibrational modes are carried out for dialanine peptide in water and carbon tetrachloride. The various manifestations in nonlinear-infrared spectroscopic experiments of the distributions of conformations of solvated dialanine are examined. The two-dimensional infrared (2D-IR) spectrum of dialanine exhibits the coupling between the amide oscillators and the correlations of the frequency fluctuations. An internally hydrogen-bonded conformation exists in CCl(4) but not in H(2)O where two externally hydrogen-bonded forms are preferred. Simulations of solvated dialanine show how the 2D-IR spectra expose the underlying structural distributions and dynamics that are not deducible from linear-infrared spectra. In H(2)O the 2D-IR shows cross-peaks from large coupling in the alpha-helical conformer and an elongated higher frequency diagonal peak, reflecting the broader distribution of structures for the more flexible acetyl end. In CCl(4), the computed cross-peak portion of the 2D-IR shows evidence of two amide-I transitions in the high-frequency region which are not apparent from the diagonal peak profile. The vibrational frequency inhomogeneity of the amide-I band arises from fluctuations of the instantaneous normal modes of these conformers rather than the shifts induced by hydrogen bonding. The simulation shows that there are correlations between fluctuations of the acetyl and amino end frequencies in H(2)O that arise from mechanical coupling and not from hydrogen bonding at the two ends of the molecule. The angular relationships between the two amide units which also show up in 2D-IR were computed, and spectral manifestations of them are discussed. The simulations also permit a calculation of the rate of energy transfer from one side of the molecule to the other. From these calculations, 2D-IR spectroscopy in conjunction with simulations is seen to be a promising tool for determining dynamics of structure changes in dipeptides.  相似文献   

17.
The conformational preference of the human milk oligosaccharide lacto-N-neotetraose, beta-d-Galp-(1 --> 4)-beta-d-GlcpNAc-(1 --> 3)-beta-d-Galp-(1 --> 4)-d-Glcp, has been analyzed using (1)H,(1)H T-ROESY and (1)H,(13)C trans-glycosidic J coupling experiments in isotropic solution and (1)H,(13)C residual dipolar couplings (RDCs) obtained in lyotropic liquid crystalline media. Molecular dynamics simulations of the tetrasaccharide with explicit water as the solvent revealed that two conformational states are significantly populated at the psi glycosidic torsion angle, defined by C(anomeric)-O-C-H, of the (1 --> 3)-linkage. Calculation of order parameters, related to the molecular shape, were based on the inertia tensor and fitting of experimental RDCs to different conformational states showed that psi(+) > 0 degrees is the major and psi(-) < 0 degrees is the minor conformation in solution, in complete agreement with a two-state analysis based on the T-ROESY data. Attention was also given to the effect of salt (200 mM NaCl) in the anisotropic medium, which was a ternary mixture of n-octyl-penta(ethylene glycol), n-octanol, and D(2)O.  相似文献   

18.
We present here calculations of free energies of multidimensional systems using an efficient sampling method. The method uses a transformed potential energy surface, which allows an efficient sampling of both low and high energy spaces and accelerates transitions over barriers. It allows efficient sampling of the configuration space over and only over the desired energy range(s). It does not require predetermined or selected reaction coordinate(s). We apply this method to study the dynamics of slow barrier crossing processes in a disaccharide and a dipeptide system.  相似文献   

19.
Ultrafast 2D IR vibrational echo spectroscopy is described and a number of experimental examples are given. Details of the experimental method including the pulse sequence, heterodyne detection, and determination of the absorptive component of the 2D spectrum are outlined. As an initial example, the 2D spectrum of the stretching mode of CO bound to the protein myoglobin (MbCO) is presented. The time dependence of the 2D spectrum of MbCO, which is caused by protein structural evolution, is presented and its relationship to the frequency-frequency correlation function is described and used to make protein structural assignments based on comparisons to molecular dynamics simulations. The 2D vibrational echo experiments on the protein horseradish peroxidase are presented. The time dependence of the 2D spectra of the enzyme in the free form and with a substrate bound at the active site are compared and used to examine the influence of substrate binding on the protein's structural dynamics. The application of 2D vibrational echo spectroscopy to the study of chemical exchange under thermal equilibrium conditions is described. 2D vibrational echo chemical exchange spectroscopy is applied to the study of formation and dissociation of organic solute-solvent complexes and to the isomerization around a carbon-carbon single bond of an ethane derivative.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号